×

A symplectic algorithm for dynamics of rigid body. (English) Zbl 1144.70004

Summary: For the dynamics of rigid body with a fixed point based on the quaternion and on the corresponding generalized momenta, we develop a displacement-based symplectic integration scheme for differential-algebraic equations. The scheme is applied to Lagrange’s equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characteristics as high accuracy and preserving system invariants. More importantly, based on generalized momenta the Lagrange’s equations show advantages over the traditional Lagrange’s equations in symplectic integrations based on generalized momenta.

MSC:

70E17 Motion of a rigid body with a fixed point
70-08 Computational methods for problems pertaining to mechanics of particles and systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
Full Text: DOI

References:

[1] Feng Kang, Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Zhejiang Science & Technology Press, Hangzhou, 2003, 271–344.
[2] Edward J Haug. Computer Aided Kinematics and Dynamics of Mechanical Systems[M]. Allyn and Bacon, Needham Heights, Massachusetts, U S, 1989, 305–335.
[3] Shanshin Chen, Daniel A Tortorelli. An energy-conserving and filtering method for stiff nonlinear multibody dynamics[J]. Multibody System Dynamics, 2003, 10(4): 341–362. · Zbl 1049.70007 · doi:10.1023/A:1026237902561
[4] Elisabet V Lens, Alberto Cardona, Michel Geradin. Energy preserving time integration for constrained multibody systems[J]. Multibody System Dynamics, 2004, 11(1): 41–61. · Zbl 1046.70003 · doi:10.1023/B:MUBO.0000014901.06757.bb
[5] Chen S, Tortorelli D A, Hansen J M. Unconditionally energy stable implicit time integration: application to multibody system analysis and design[J]. International Journal for Numerical Methods in Engineering, 2000, 48(6): 791–822. · Zbl 0971.70005 · doi:10.1002/(SICI)1097-0207(20000630)48:6<791::AID-NME859>3.0.CO;2-Z
[6] Simo J C, Tarnow N, Wong K. Exact energy-momentum conserving algorithms and sympectic schemes for nonlinear dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 100(1): 63–116. · Zbl 0764.73096 · doi:10.1016/0045-7825(92)90115-Z
[7] Channell P, Scovel C. Symplectic integration of Hamiltonian systems[J]. Nonlinearity, 1990, 3(2): 231–259. · Zbl 0704.65052 · doi:10.1088/0951-7715/3/2/001
[8] Leimkuhler B, S. Reich Symplectic integration of constrained Hamiltonian systems[J]. Math Comp, 1994, 63(208): 589–605. · Zbl 0813.65103 · doi:10.1090/S0025-5718-1994-1250772-7
[9] Barth E, Leimkuhler B. Symplectic methods for conservative multibody systems[C]. In: Mardsen J E, Patrick G W, Shadwick W F (eds). Integration Algorithms for Classical Mechanics, Fields Institute Communications. American Mathematical Society, U S, 1996, 25–43. · Zbl 0895.70004
[10] Leimkuhler B, Skeel R D. Symplectic numerical integrators in constrained Hamiltonian systems[J]. J Comp Phys, 1994, 112(1): 117–125. · Zbl 0817.65057 · doi:10.1006/jcph.1994.1085
[11] Baumgarte J W. A new method of stabilization for holonomic constraints[J]. ASME Journal of Applied Mechanics, 1983, 50(4): 869–870. · Zbl 0534.70011 · doi:10.1115/1.3167159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.