×

Even-point multi-loop unitarity and its applications: exponentiation, anomalies and evanescence. (English) Zbl 07821502

Summary: We identify novel structure in newly computed multi-loop amplitudes and quantum actions for even-point effective field theories, including both the nonlinear sigma model (NLSM) and double-copy gauge theories such as Born-Infeld and its supersymmetric generalizations. We exploit special properties of all even-point theories towards establishing an efficient unitarity based amplitude construction. In doing so, we find evidence that the leading IR divergence of NLSM amplitudes exponentiates when the target space is \(\mathbb{CP}^1 \cong\mathrm{SU}(2)/\mathrm{U}(1)\). We then systematically compute the two-loop anomalous behavior of Born-Infeld, and find that the counterterms needed to restore U(1) invariant behavior at loop-level can be constructed via a symmetric-structure double-copy. We also demonstrate that the divergent part of the one-minus (\(-+++\)) two-loop anomaly vanishes upon introducing an evanescent operator. In addition to these purely photonic counterterms, we verify through explicit calculation that the anomalous matrix elements that violate U(1) duality invariance can be alternatively cancelled by summing over internal \(\mathcal{N} = 4\) DBIVA superfields. Finally we find that \(\mathcal{N} = 4\) Dirac-Born-Infeld-Volkov-Akulov (DBIVA) amplitudes admit double-copy construction through two-loop order by reproducing our unitarity based result with a double copy between color-dual \(\mathcal{N} = 4\) super-Yang-Mills and our two-loop NLSM amplitudes. This result supports the possibility of color-dual representations for NLSM beyond one-loop. We conclude with an overview of how \(D\)-dimensional four-photon counterterms can be constructed in generality with the symmetric-structure double-copy, and outline a convenient way of counting evanescent operators using Hilbert series as generating functions.

MSC:

81-XX Quantum theory

Software:

Reduze; FIRE5; AIR; FIRE

References:

[1] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[2] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[3] Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci.46 (1996) 109 [hep-ph/9602280] [INSPIRE].
[4] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].
[5] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[6] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[7] Adams, A., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006) · doi:10.1088/1126-6708/2006/10/014
[8] C. Cheung, K. Kampf, J. Novotný and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
[9] C. Cheung et al., On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
[10] Cheung, C., A Periodic Table of Effective Field Theories, JHEP, 02, 020 (2017) · Zbl 1377.81123 · doi:10.1007/JHEP02(2017)020
[11] C. Cheung et al., Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
[12] Low, I.; Yin, Z., Soft Bootstrap and Effective Field Theories, JHEP, 11, 078 (2019) · Zbl 1429.81049 · doi:10.1007/JHEP11(2019)078
[13] J.J.M. Carrasco, L. Rodina, Z. Yin and S. Zekioğlu, Simple encoding of higher derivative gauge and gravity counterterms, Phys. Rev. Lett.125 (2020) 251602 [arXiv:1910.12850] [INSPIRE].
[14] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[15] Carrasco, JJM; Rodina, L.; Zekioğlu, S., Composing effective prediction at five points, JHEP, 06, 169 (2021) · doi:10.1007/JHEP06(2021)169
[16] Chi, H-H, Generalizations of the double-copy: the KLT bootstrap, JHEP, 03, 077 (2022) · Zbl 1522.81202 · doi:10.1007/JHEP03(2022)077
[17] Bonnefoy, Q., The seeds of EFT double copy, JHEP, 05, 042 (2022) · Zbl 1522.81197 · doi:10.1007/JHEP05(2022)042
[18] J.J.M. Carrasco, M. Lewandowski and N.H. Pavao, Color-Dual Fates of F^3, R^3, and N = 4 Supergravity, Phys. Rev. Lett.131 (2023) 051601 [arXiv:2203.03592] [INSPIRE].
[19] Carrasco, JJM; Lewandowski, M.; Pavao, NH, Double-copy towards supergravity inflation with α-attractor models, JHEP, 02, 015 (2023) · Zbl 1541.83096 · doi:10.1007/JHEP02(2023)015
[20] D. Green, Y. Huang and C.-H. Shen, Inflationary Adler conditions, Phys. Rev. D107 (2023) 043534 [arXiv:2208.14544] [INSPIRE].
[21] N.H. Pavao, Effective observables for electromagnetic duality from novel amplitude decomposition, Phys. Rev. D107 (2023) 065020 [arXiv:2210.12800] [INSPIRE].
[22] A.S.-K. Chen, H. Elvang and A. Herderschee, Emergence of String Monodromy in Effective Field Theory, arXiv:2212.13998 [INSPIRE].
[23] A.S.-K. Chen, H. Elvang and A. Herderschee, Bootstrapping the String Kawai-Lewellen-Tye Kernel, Phys. Rev. Lett.131 (2023) 031602 [arXiv:2302.04895] [INSPIRE].
[24] T.V. Brown et al., Scalar Bern-Carrasco-Johansson bootstrap, Phys. Rev. D108 (2023) 105008 [arXiv:2305.05688] [INSPIRE].
[25] Y. Li, D. Roest and T. ter Veldhuis, Hybrid Goldstone Modes from the Double Copy Bootstrap, arXiv:2307.13418 [INSPIRE].
[26] Z. Bern et al., The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].
[27] Bern, Z., The SAGEX review on scattering amplitudes Chapter 2: An invitation to color-kinematics duality and the double copy, J. Phys. A, 55, 443003 (2022) · Zbl 1520.81124 · doi:10.1088/1751-8121/ac93cf
[28] T. Adamo et al., Snowmass White Paper: the Double Copy and its Applications, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2204.06547] [INSPIRE].
[29] Z. Bern et al., Simplifying Multiloop Integrands and Ultraviolet Divergences of Gauge Theory and Gravity Amplitudes, Phys. Rev. D85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].
[30] Z. Bern et al., The Complete Four-Loop Four-Point Amplitude in N = 4 Super-Yang-Mills Theory, Phys. Rev. D82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].
[31] Z. Bern et al., The Ultraviolet Behavior of N = 8 Supergravity at Four Loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].
[32] Bjerrum-Bohr, NEJ; Dennen, T.; Monteiro, R.; O’Connell, D., Integrand Oxidation and One-Loop Colour-Dual Numerators in N = 4 Gauge Theory, JHEP, 07, 092 (2013) · Zbl 1342.81261 · doi:10.1007/JHEP07(2013)092
[33] Edison, A.; He, S.; Schlotterer, O.; Teng, F., One-loop Correlators and BCJ Numerators from Forward Limits, JHEP, 09, 079 (2020) · Zbl 1454.83130 · doi:10.1007/JHEP09(2020)079
[34] Edison, A., Perfecting one-loop BCJ numerators in SYM and supergravity, JHEP, 02, 164 (2023) · Zbl 1541.83097 · doi:10.1007/JHEP02(2023)164
[35] C. Cheung and C.-H. Shen, Symmetry for Flavor-Kinematics Duality from an Action, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].
[36] He, S.; Schlotterer, O.; Zhang, Y., New BCJ representations for one-loop amplitudes in gauge theories and gravity, Nucl. Phys. B, 930, 328 (2018) · Zbl 1404.81176 · doi:10.1016/j.nuclphysb.2018.03.003
[37] Z. Bern et al., Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops, Phys. Rev. D92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
[38] Mogull, G.; O’Connell, D., Overcoming Obstacles to Colour-Kinematics Duality at Two Loops, JHEP, 12, 135 (2015) · Zbl 1388.81868
[39] Z. Bern, S. Davies and J. Nohle, Double-Copy Constructions and Unitarity Cuts, Phys. Rev. D93 (2016) 105015 [arXiv:1510.03448] [INSPIRE].
[40] Geyer, Y.; Monteiro, R.; Stark-Muchão, R., Two-Loop Scattering Amplitudes: Double-Forward Limit and Colour-Kinematics Duality, JHEP, 12, 049 (2019) · Zbl 1431.81159 · doi:10.1007/JHEP12(2019)049
[41] Johansson, H.; Kälin, G.; Mogull, G., Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP, 09, 019 (2017) · Zbl 1382.83120 · doi:10.1007/JHEP09(2017)019
[42] Chen, G.; Johansson, H.; Teng, F.; Wang, T., On the kinematic algebra for BCJ numerators beyond the MHV sector, JHEP, 11, 055 (2019) · doi:10.1007/JHEP11(2019)055
[43] Chen, G.; Johansson, H.; Teng, F.; Wang, T., Next-to-MHV Yang-Mills kinematic algebra, JHEP, 10, 042 (2021) · doi:10.1007/JHEP10(2021)042
[44] A. Brandhuber et al., Kinematic Hopf Algebra for Bern-Carrasco-Johansson Numerators in Heavy-Mass Effective Field Theory and Yang-Mills Theory, Phys. Rev. Lett.128 (2022) 121601 [arXiv:2111.15649] [INSPIRE].
[45] Cheung, C.; Mangan, J., Covariant color-kinematics duality, JHEP, 11, 069 (2021) · Zbl 1521.81253 · doi:10.1007/JHEP11(2021)069
[46] Ben-Shahar, M.; Johansson, H., Off-shell color-kinematics duality for Chern-Simons, JHEP, 08, 035 (2022) · Zbl 1522.81222 · doi:10.1007/JHEP08(2022)035
[47] C. Cheung, J. Mangan, J. Parra-Martinez and N. Shah, Non-perturbative Double Copy in Flatland, Phys. Rev. Lett.129 (2022) 221602 [arXiv:2204.07130] [INSPIRE].
[48] Ben-Shahar, M.; Garozzo, L.; Johansson, H., Lagrangians manifesting color-kinematics duality in the NMHV sector of Yang-Mills, JHEP, 08, 222 (2023) · Zbl 07749097 · doi:10.1007/JHEP08(2023)222
[49] F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. · Zbl 1388.83196
[50] Carrasco, JJM; Mafra, CR; Schlotterer, O., Abelian Z-theory: NLSM amplitudes and α’-corrections from the open string, JHEP, 06, 093 (2017) · Zbl 1380.83251 · doi:10.1007/JHEP06(2017)093
[51] J.J.M. Carrasco and N.H. Pavao, Virtues of a symmetric-structure double copy, Phys. Rev. D107 (2023) 065005 [arXiv:2211.04431] [INSPIRE].
[52] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., Electromagnetic Duality and D3-Brane Scattering Amplitudes Beyond Leading Order, JHEP, 04, 173 (2021) · Zbl 1462.81154 · doi:10.1007/JHEP04(2021)173
[53] Z. Bern et al., Unexpected Cancellations in Gravity Theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE].
[54] Carrasco, JJM; Kallosh, R.; Roiban, R.; Tseytlin, AA, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP, 07, 029 (2013) · Zbl 1342.83454 · doi:10.1007/JHEP07(2013)029
[55] Craig, N.; Garcia Garcia, I.; Kribs, GD, The UV fate of anomalous U(1)s and the Swampland, JHEP, 11, 063 (2020) · Zbl 1456.83095 · doi:10.1007/JHEP11(2020)063
[56] Monteiro, R.; Stark-Muchão, R.; Wikeley, S., Anomaly and double copy in quantum self-dual Yang-Mills and gravity, JHEP, 09, 030 (2023) · Zbl 07754609 · doi:10.1007/JHEP09(2023)030
[57] Z. Bern, A. Edison, D. Kosower and J. Parra-Martinez, Curvature-squared multiplets, evanescent effects, and the U(1) anomaly in N = 4 supergravity, Phys. Rev. D96 (2017) 066004 [arXiv:1706.01486] [INSPIRE].
[58] Z. Bern, J. Parra-Martinez and R. Roiban, Canceling the U(1) Anomaly in the S Matrix of N=4 Supergravity, Phys. Rev. Lett.121 (2018) 101604 [arXiv:1712.03928] [INSPIRE].
[59] Bern, Z.; Kosower, D.; Parra-Martinez, J., Two-loop n-point anomalous amplitudes in N = 4 supergravity, Proc. Roy. Soc. Lond. A, 476, 20190722 (2020) · Zbl 1472.83099
[60] M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett. B160 (1985) 81 [INSPIRE].
[61] M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B266 (1986) 709 [INSPIRE].
[62] van de Ven, AEM, Two loop quantum gravity, Nucl. Phys. B, 378, 309 (1992) · doi:10.1016/0550-3213(92)90011-Y
[63] Z. Bern et al., Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett.111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].
[64] M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D70 (2004) 123505 [hep-th/0404084] [INSPIRE].
[65] P. Creminelli et al., Limits on non-gaussianities from wmap data, JCAP05 (2006) 004 [astro-ph/0509029] [INSPIRE].
[66] J.R. Fergusson and E.P.S. Shellard, The shape of primordial non-Gaussianity and the CMB bispectrum, Phys. Rev. D80 (2009) 043510 [arXiv:0812.3413] [INSPIRE].
[67] J.J.M. Carrasco, R. Kallosh and A. Linde, α-Attractors: Planck, LHC and Dark Energy, JHEP10 (2015) 147 [arXiv:1506.01708] [INSPIRE]. · Zbl 1387.83099
[68] J.J.M. Carrasco, R. Kallosh and A. Linde, Cosmological Attractors and Initial Conditions for Inflation, Phys. Rev. D92 (2015) 063519 [arXiv:1506.00936] [INSPIRE].
[69] J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev. D92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].
[70] BICEP and Keck collaborations, Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett.127 (2021) 151301 [arXiv:2110.00483] [INSPIRE].
[71] Kallosh, R.; Linde, A., BICEP/Keck and cosmological attractors, JCAP, 12, 008 (2021) · doi:10.1088/1475-7516/2021/12/008
[72] Kleiss, R.; Kuijf, H., Multi-Gluon Cross-sections and Five Jet Production at Hadron Colliders, Nucl. Phys. B, 312, 616 (1989) · doi:10.1016/0550-3213(89)90574-9
[73] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423 (1999) · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[74] Vaman, D.; Yao, Y-P, Constraints and Generalized Gauge Transformations on Tree-Level Gluon and Graviton Amplitudes, JHEP, 11, 028 (2010) · Zbl 1294.81295 · doi:10.1007/JHEP11(2010)028
[75] N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills Amplitude Relations, Phys. Rev. D82 (2010) 107702 [arXiv:1005.4367] [INSPIRE]. · Zbl 1291.81230
[76] Bjerrum-Bohr, NEJ; Damgaard, PH; Feng, B.; Sondergaard, T., Proof of Gravity and Yang-Mills Amplitude Relations, JHEP, 09, 067 (2010) · Zbl 1291.81230 · doi:10.1007/JHEP09(2010)067
[77] Bjerrum-Bohr, NEJ; Damgaard, PH; Sondergaard, T.; Vanhove, P., The Momentum Kernel of Gauge and Gravity Theories, JHEP, 01, 001 (2011) · Zbl 1214.81145 · doi:10.1007/JHEP01(2011)001
[78] Bjerrum-Bohr, NEJ; Damgaard, PH; Monteiro, R.; O’Connell, D., Algebras for Amplitudes, JHEP, 06, 061 (2012) · Zbl 1397.81135 · doi:10.1007/JHEP06(2012)061
[79] J.J.M. Carrasco, Gauge and Gravity Amplitude Relations, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders, Boulder, U.S.A., June 02-27 (2014), p. 477-557 [doi:10.1142/9789814678766_0011] [arXiv:1506.00974] [INSPIRE]. · Zbl 1334.81066
[80] Badger, SD, Direct Extraction Of One Loop Rational Terms, JHEP, 01, 049 (2009) · Zbl 1243.81219 · doi:10.1088/1126-6708/2009/01/049
[81] H. Elvang and Y.-T. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[82] G. Passarino and M.J.G. Veltman, One Loop Corrections for e^+e^−Annihilation Into μ^+μ^−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
[83] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE]. · Zbl 1007.81512
[84] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys.211 (2004) 1 [INSPIRE]. · Zbl 1098.81003
[85] Weinberg, S., Phenomenological Lagrangians, Physica A, 96, 327 (1979) · doi:10.1016/0378-4371(79)90223-1
[86] Gasser, J.; Leutwyler, H., Chiral Perturbation Theory to One Loop, Annals Phys., 158, 142 (1984) · doi:10.1016/0003-4916(84)90242-2
[87] K. Kampf, J. Novotný and J. Trnka, On different lagrangian formalisms for vector resonances within chiral perturbation theory, Eur. Phys. J. C50 (2007) 385 [hep-ph/0608051] [INSPIRE]. · Zbl 1191.81152
[88] Kampf, K.; Novotný, J.; Trnka, J., Tree-level Amplitudes in the Nonlinear Sigma Model, JHEP, 05, 032 (2013) · Zbl 1392.81139 · doi:10.1007/JHEP05(2013)032
[89] A.V. Manohar and V. Mateu, Dispersion Relation Bounds for ππ Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
[90] Bellazzini, B., Softness and amplitudes’ positivity for spinning particles, JHEP, 02, 034 (2017) · Zbl 1377.81219 · doi:10.1007/JHEP02(2017)034
[91] Guerrieri, AL; Penedones, J.; Vieira, P., S-matrix bootstrap for effective field theories: massless pions, JHEP, 06, 088 (2021) · doi:10.1007/JHEP06(2021)088
[92] J. Bijnens et al., Elastic ππ scattering to two loops, Phys. Lett. B374 (1996) 210 [hep-ph/9511397] [INSPIRE].
[93] J. Bijnens et al., Pion-pion scattering at low energy, Nucl. Phys. B508 (1997) 263 [hep-ph/9707291] [INSPIRE].
[94] L. Girlanda, M. Knecht, B. Moussallam and J. Stern, Comment on the prediction of two loop standard chiral perturbation theory for low-energy ππ scattering, Phys. Lett. B409 (1997) 461 [hep-ph/9703448] [INSPIRE].
[95] I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].
[96] I. Low and Z. Yin, Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models, Phys. Rev. Lett.120 (2018) 061601 [arXiv:1709.08639] [INSPIRE].
[97] D. Liu, I. Low and Z. Yin, Universal Imprints of a Pseudo-Nambu-Goldstone Higgs Boson, Phys. Rev. Lett.121 (2018) 261802 [arXiv:1805.00489] [INSPIRE].
[98] Low, I.; Yin, Z., The Infrared Structure of Nambu-Goldstone Bosons, JHEP, 10, 078 (2018) · Zbl 1402.83099 · doi:10.1007/JHEP10(2018)078
[99] Born, M.; Infeld, L., Foundations of the new field theory, Proc. Roy. Soc. Lond. A, 144, 425 (1934) · JFM 60.0750.02 · doi:10.1098/rspa.1934.0059
[100] de Rham, C.; Tolley, AJ, DBI and the Galileon reunited, JCAP, 05, 015 (2010) · doi:10.1088/1475-7516/2010/05/015
[101] Volkov, DV; Akulov, VP, Is the Neutrino a Goldstone Particle?, Phys. Lett. B, 46, 109 (1973) · doi:10.1016/0370-2693(73)90490-5
[102] Kallosh, R., Volkov-Akulov theory and D-branes, Lect. Notes Phys., 509, 49 (1998) · Zbl 0933.81024 · doi:10.1007/BFb0105228
[103] Komargodski, Z.; Seiberg, N., From Linear SUSY to Constrained Superfields, JHEP, 09, 066 (2009) · doi:10.1088/1126-6708/2009/09/066
[104] Kuzenko, SM; Tyler, SJ, Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition, Phys. Lett. B, 698, 319 (2011) · doi:10.1016/j.physletb.2011.03.020
[105] Rocek, M., Linearizing the Volkov-Akulov Model, Phys. Rev. Lett., 41, 451 (1978) · doi:10.1103/PhysRevLett.41.451
[106] Casalbuoni, R., Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B, 220, 569 (1989) · doi:10.1016/0370-2693(89)90788-0
[107] Ferrara, S.; Kallosh, R.; Linde, A., Cosmology with Nilpotent Superfields, JHEP, 10, 143 (2014) · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[108] Kallosh, R.; Linde, A.; Roest, D., Superconformal Inflationary α-Attractors, JHEP, 11, 198 (2013) · Zbl 1342.83485 · doi:10.1007/JHEP11(2013)198
[109] A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [doi:10.1142/9789812793850_0025] [INSPIRE]. · Zbl 1065.81594
[110] Bergshoeff, E., Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry, JHEP, 08, 100 (2013) · Zbl 1342.81549 · doi:10.1007/JHEP08(2013)100
[111] Mafra, CR; Schlotterer, O.; Stieberger, S., Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B, 873, 419 (2013) · Zbl 1282.81151 · doi:10.1016/j.nuclphysb.2013.04.023
[112] Mafra, CR; Schlotterer, O.; Stieberger, S., Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys. B, 873, 461 (2013) · Zbl 1282.81152 · doi:10.1016/j.nuclphysb.2013.04.022
[113] Broedel, J.; Schlotterer, O.; Stieberger, S., Polylogarithms, Multiple Zeta Values and Superstring Amplitudes, Fortsch. Phys., 61, 812 (2013) · Zbl 1338.81316 · doi:10.1002/prop.201300019
[114] Carrasco, JJM; Mafra, CR; Schlotterer, O., Semi-abelian Z-theory: NLSM+ϕ^3from the open string, JHEP, 08, 135 (2017) · Zbl 1381.83121 · doi:10.1007/JHEP08(2017)135
[115] Mafra, CR; Schlotterer, O., Non-abelian Z-theory: Berends-Giele recursion for the α′-expansion of disk integrals, JHEP, 01, 031 (2017) · Zbl 1373.83110 · doi:10.1007/JHEP01(2017)031
[116] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
[117] M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B198 (1982) 474 [INSPIRE].
[118] Azevedo, T.; Chiodaroli, M.; Johansson, H.; Schlotterer, O., Heterotic and bosonic string amplitudes via field theory, JHEP, 10, 012 (2018) · Zbl 1402.83092 · doi:10.1007/JHEP10(2018)012
[119] Bossard, G.; Howe, PS; Stelle, KS, Anomalies and divergences in N = 4 supergravity, Phys. Lett. B, 719, 424 (2013) · Zbl 1370.83101 · doi:10.1016/j.physletb.2013.01.021
[120] J. Novotný, Self-duality, helicity conservation and normal ordering in nonlinear QED, Phys. Rev. D98 (2018) 085015 [arXiv:1806.02167] [INSPIRE].
[121] Gibbons, GW; Rasheed, DA, SL(2, R) invariance of nonlinear electrodynamics coupled to an axion and a dilaton, Phys. Lett. B, 365, 46 (1996) · doi:10.1016/0370-2693(95)01272-9
[122] H. Babaei-Aghbolagh and M.R. Garousi, S-duality of tree-level S-matrix elements in D3-brane effective action, Phys. Rev. D88 (2013) 026008 [arXiv:1304.2938] [INSPIRE].
[123] Schrödinger, E., Contributions to Born’s new theory of the electromagnetic field, Proc. Roy. Soc. Lond. A, 150, 465 (1935) · Zbl 0011.32807 · doi:10.1098/rspa.1935.0116
[124] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., All-Multiplicity One-Loop Amplitudes in Born-Infeld Electrodynamics from Generalized Unitarity, JHEP, 03, 009 (2020) · Zbl 1435.81119 · doi:10.1007/JHEP03(2020)009
[125] Heydeman, M.; Schwarz, JH; Wen, C., M5-Brane and D-Brane Scattering Amplitudes, JHEP, 12, 003 (2017) · Zbl 1383.81166 · doi:10.1007/JHEP12(2017)003
[126] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B467 (1996) 479 [hep-ph/9511336] [INSPIRE].
[127] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One loop selfdual and N = 4 superYang-Mills, Phys. Lett. B, 394, 105 (1997) · doi:10.1016/S0370-2693(96)01676-0
[128] J.C. Collins, Renormalization, Cambridge University Press, Cambridge (2023) [doi:10.1017/9781009401807] [INSPIRE]. · Zbl 1517.81006
[129] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
[130] Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
[131] Carrasco, JJM; Vazquez-Holm, IA, Extracting Einstein from the loop-level double-copy, JHEP, 11, 088 (2021) · Zbl 1521.83096 · doi:10.1007/JHEP11(2021)088
[132] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE].
[133] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
[134] Smirnov, AV, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun., 189, 182 (2015) · Zbl 1344.81030 · doi:10.1016/j.cpc.2014.11.024
[135] von Manteuffel, A.; Schabinger, RM, A novel approach to integration by parts reduction, Phys. Lett. B, 744, 101 (2015) · Zbl 1330.81151 · doi:10.1016/j.physletb.2015.03.029
[136] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE]. · Zbl 1510.81007
[137] A.V. Smirnov and V.A. Smirnov, How to choose master integrals, Nucl. Phys. B960 (2020) 115213 [arXiv:2002.08042] [INSPIRE]. · Zbl 1472.81102
[138] J. Usovitsch, Factorization of denominators in integration-by-parts reductions, arXiv:2002.08173 [INSPIRE].
[139] P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [INSPIRE]. · Zbl 1498.81004
[140] Hartmann, C.; Shepherd, W.; Trott, M., The Z decay width in the SMEFT: y_tand λ corrections at one loop, JHEP, 03, 060 (2017) · doi:10.1007/JHEP03(2017)060
[141] Chala, M.; Díaz-Carmona, Á.; Guedes, G., A Green’s basis for the bosonic SMEFT to dimension 8, JHEP, 05, 138 (2022) · Zbl 1522.81199 · doi:10.1007/JHEP05(2022)138
[142] J. Aebischer, A.J. Buras and J. Kumar, Simple rules for evanescent operators in one-loop basis transformations, Phys. Rev. D107 (2023) 075007 [arXiv:2202.01225] [INSPIRE].
[143] Fuentes-Martín, J., Evanescent operators in one-loop matching computations, JHEP, 02, 031 (2023) · Zbl 1541.81102 · doi:10.1007/JHEP02(2023)031
[144] G. Isidori, F. Wilsch and D. Wyler, The Standard Model effective field theory at work, arXiv:2303.16922 [INSPIRE].
[145] Z. Bern et al., Evanescent Effects Can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences, Phys. Rev. Lett.115 (2015) 211301 [arXiv:1507.06118] [INSPIRE].
[146] Z. Bern, H.-H. Chi, L. Dixon and A. Edison, Two-Loop Renormalization of Quantum Gravity Simplified, Phys. Rev. D95 (2017) 046013 [arXiv:1701.02422] [INSPIRE].
[147] Dugan, MJ; Grinstein, B., On the vanishing of evanescent operators, Phys. Lett. B, 256, 239 (1991) · doi:10.1016/0370-2693(91)90680-O
[148] S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B455 (1995) 39 [hep-ph/9412375] [INSPIRE].
[149] Bell, G., NNLO vertex corrections in charmless hadronic B decays: Real part, Nucl. Phys. B, 822, 172 (2009) · Zbl 1196.81229 · doi:10.1016/j.nuclphysb.2009.07.012
[150] T. Becher and R.J. Hill, Loop corrections to heavy-to-light form-factors and evanescent operators in SCET, JHEP10 (2004) 055 [hep-ph/0408344] [INSPIRE].
[151] L. Di Pietro and E. Stamou, Operator mixing in theϵ-expansion: Scheme and evanescent-operator independence, Phys. Rev. D97 (2018) 065007 [arXiv:1708.03739] [INSPIRE].
[152] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE].
[153] Feng, B.; Zhang, Y., Note on the Labelled tree graphs, JHEP, 12, 096 (2020) · doi:10.1007/JHEP12(2020)096
[154] L.F. Alday, V. Gonçalves, M. Nocchi and X. Zhou, Six-Point AdS Gluon Amplitudes from Flat Space and Factorization, arXiv:2307.06884 [INSPIRE].
[155] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].
[156] B. de Wit et al., Gauge and Matter Fields Coupled to N = 2 Supergravity, Phys. Lett. B134 (1984) 37 [INSPIRE].
[157] de Wit, B.; Van Proeyen, A., Broken sigma model isometries in very special geometry, Phys. Lett. B, 293, 94 (1992) · doi:10.1016/0370-2693(92)91485-R
[158] de Wit, B.; Vanderseypen, F.; Van Proeyen, A., Symmetry structure of special geometries, Nucl. Phys. B, 400, 463 (1993) · Zbl 0941.83529 · doi:10.1016/0550-3213(93)90413-J
[159] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in \(\mathcal{N} = 2\) Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP01 (2015) 081 [arXiv:1408.0764] [INSPIRE]. · Zbl 1388.83772
[160] Naculich, SG; Nastase, H.; Schnitzer, HJ, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B, 805, 40 (2008) · Zbl 1190.83096 · doi:10.1016/j.nuclphysb.2008.07.001
[161] White, CD, Factorization Properties of Soft Graviton Amplitudes, JHEP, 05, 060 (2011) · Zbl 1296.83030 · doi:10.1007/JHEP05(2011)060
[162] P. Di Vecchia et al., A tale of two exponentiations in \(\mathcal{N} = 8\) supergravity, Phys. Lett. B798 (2019) 134927 [arXiv:1908.05603] [INSPIRE]. · Zbl 1434.83160
[163] P. Di Vecchia et al., A tale of two exponentiations in \(\mathcal{N} = 8\) supergravity at subleading level, JHEP03 (2020) 173 [arXiv:1911.11716] [INSPIRE]. · Zbl 1435.83198
[164] C. Heissenberg, Infrared divergences and the eikonal exponentiation, Phys. Rev. D104 (2021) 046016 [arXiv:2105.04594] [INSPIRE].
[165] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., Soft Bootstrap and Supersymmetry, JHEP, 01, 195 (2019) · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[166] Cachazo, F.; Cha, P.; Mizera, S., Extensions of Theories from Soft Limits, JHEP, 06, 170 (2016) · Zbl 1388.81203 · doi:10.1007/JHEP06(2016)170
[167] C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett.91 (2003) 251602 [hep-th/0309040] [INSPIRE].
[168] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[169] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B552 (2003) 48 [hep-ph/0210130] [INSPIRE]. · Zbl 1005.81519
[170] Minahan, JA; Zarembo, K., The Bethe ansatz for N = 4 superYang-Mills, JHEP, 03, 013 (2003) · doi:10.1088/1126-6708/2003/03/013
[171] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS_5 × S^5superstring, Phys. Rev. D69 (2004) 046002 [hep-th/0305116] [INSPIRE].
[172] Beisert, N., The complete one loop dilatation operator of N = 4 superYang-Mills theory, Nucl. Phys. B, 676, 3 (2004) · Zbl 1097.81575 · doi:10.1016/j.nuclphysb.2003.10.019
[173] Beisert, N., Higher loops, integrability and the near BMN limit, JHEP, 09, 062 (2003) · doi:10.1088/1126-6708/2003/09/062
[174] Beisert, N.; Staudacher, M., The N = 4 SYM integrable super spin chain, Nucl. Phys. B, 670, 439 (2003) · Zbl 1058.81581 · doi:10.1016/j.nuclphysb.2003.08.015
[175] Dolan, L.; Nappi, CR; Witten, E., A relation between approaches to integrability in superconformal Yang-Mills theory, JHEP, 10, 017 (2003) · doi:10.1088/1126-6708/2003/10/017
[176] Arutyunov, G.; Staudacher, M., Matching higher conserved charges for strings and spins, JHEP, 03, 004 (2004) · doi:10.1088/1126-6708/2004/03/004
[177] Ryzhov, AV; Tseytlin, AA, Towards the exact dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B, 698, 132 (2004) · Zbl 1123.81413 · doi:10.1016/j.nuclphysb.2004.07.037
[178] Frolov, SA; Roiban, R.; Tseytlin, AA, Gauge-string duality for (non)supersymmetric deformations of N = 4 super Yang-Mills theory, Nucl. Phys. B, 731, 1 (2005) · Zbl 1114.81330 · doi:10.1016/j.nuclphysb.2005.10.004
[179] Z. Bern et al., On the Structure of Supersymmetric Sums in Multi-Loop Unitarity Cuts, Phys. Rev. D80 (2009) 065029 [arXiv:0903.5348] [INSPIRE].
[180] Chiodaroli, M.; Jin, Q.; Roiban, R., Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory, JHEP, 01, 152 (2014) · Zbl 1333.81391 · doi:10.1007/JHEP01(2014)152
[181] Carrasco, JJM; Seifi, A., Loop-level double-copy for massive fermions in the fundamental, JHEP, 05, 217 (2023) · Zbl 07702032 · doi:10.1007/JHEP05(2023)217
[182] Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 superYang-Mills, Phys. Lett. B401 (1997) 273 [hep-ph/9702424] [INSPIRE].
[183] J.J.M. Carrasco, A. Edison and H. Johansson, Maximal Super-Yang-Mills at Six Loops via Novel Integrand Bootstrap, arXiv:2112.05178 [INSPIRE].
[184] Bern, Z.; Bjerrum-Bohr, NEJ; Dunbar, DC, Inherited twistor-space structure of gravity loop amplitudes, JHEP, 05, 056 (2005) · doi:10.1088/1126-6708/2005/05/056
[185] R.H. Boels and R. Medina, Graviton and gluon scattering from first principles, Phys. Rev. Lett.118 (2017) 061602 [arXiv:1607.08246] [INSPIRE].
[186] J.L. Bourjaily et al., Gauge-Invariant Double-Copies via Recursion, arXiv:2307.02542 [INSPIRE].
[187] Caron-Huot, S.; Komargodski, Z.; Sever, A.; Zhiboedov, A., Strings from Massive Higher Spins: The asymptotic Uniqueness of the Veneziano Amplitude, JHEP, 10, 026 (2017) · Zbl 1383.83162 · doi:10.1007/JHEP10(2017)026
[188] Chiodaroli, M.; Johansson, H.; Pichini, P., Compton black-hole scattering for s ≤ 5/2, JHEP, 02, 156 (2022) · Zbl 1522.81678 · doi:10.1007/JHEP02(2022)156
[189] Cangemi, L.; Pichini, P., Classical limit of higher-spin string amplitudes, JHEP, 06, 167 (2023) · Zbl 07716873 · doi:10.1007/JHEP06(2023)167
[190] L. Cangemi et al., Kerr Black Holes From Massive Higher-Spin Gauge Symmetry, Phys. Rev. Lett.131 (2023) 221401 [arXiv:2212.06120] [INSPIRE].
[191] Geiser, N.; Lindwasser, LW, Generalized Veneziano and Virasoro amplitudes, JHEP, 04, 031 (2023) · Zbl 07693919 · doi:10.1007/JHEP04(2023)031
[192] Cheung, C.; Remmen, GN, Veneziano variations: how unique are string amplitudes?, JHEP, 01, 122 (2023) · Zbl 1540.81162 · doi:10.1007/JHEP01(2023)122
[193] H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
[194] Johansson, H.; Mogull, G.; Teng, F., Unraveling conformal gravity amplitudes, JHEP, 09, 080 (2018) · Zbl 1398.83080 · doi:10.1007/JHEP09(2018)080
[195] Henning, B.; Lu, X.; Melia, T.; Murayama, H., Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys., 347, 363 (2016) · Zbl 1350.81021 · doi:10.1007/s00220-015-2518-2
[196] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
[197] R.M. Fonseca, Enumerating the operators of an effective field theory, Phys. Rev. D101 (2020) 035040 [arXiv:1907.12584] [INSPIRE].
[198] Hays, C.; Martin, A.; Sanz, V.; Setford, J., On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP, 02, 123 (2019) · doi:10.1007/JHEP02(2019)123
[199] S. Alioli et al., Theoretical developments in the SMEFT at dimension-8 and beyond, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2203.06771] [INSPIRE].
[200] Damgaard, PH; Haddad, K.; Helset, A., Heavy Black Hole Effective Theory, JHEP, 11, 070 (2019) · Zbl 1429.83034 · doi:10.1007/JHEP11(2019)070
[201] Haddad, K.; Helset, A., Tidal effects in quantum field theory, JHEP, 12, 024 (2020) · Zbl 1457.81070 · doi:10.1007/JHEP12(2020)024
[202] Bern, Z., Leading Nonlinear Tidal Effects and Scattering Amplitudes, JHEP, 05, 188 (2021) · Zbl 1466.81133 · doi:10.1007/JHEP05(2021)188
[203] Balkin, R., On-shell Higgsing for EFTs, JHEP, 03, 129 (2022) · Zbl 1522.81192 · doi:10.1007/JHEP03(2022)129
[204] Liu, H.; Ma, T.; Shadmi, Y.; Waterbury, M., An EFT hunter’s guide to two-to-two scattering: HEFT and SMEFT on-shell amplitudes, JHEP, 05, 241 (2023) · doi:10.1007/JHEP05(2023)241
[205] Haddad, K., Recursion in the classical limit and the neutron-star Compton amplitude, JHEP, 05, 177 (2023) · Zbl 07701992 · doi:10.1007/JHEP05(2023)177
[206] Shankar, R.; Witten, E., The S Matrix of the Supersymmetric Nonlinear Sigma Model, Phys. Rev. D, 17, 2134 (1978) · doi:10.1103/PhysRevD.17.2134
[207] Zamolodchikov, AB; Zamolodchikov, AB, Relativistic Factorized S Matrix in Two-Dimensions Having O(N) Isotopic Symmetry, JETP Lett., 26, 457 (1977)
[208] Komatsu, S.; Mahajan, R.; Shao, S-H, An Index for Quantum Integrability, SciPost Phys., 7, 065 (2019) · doi:10.21468/SciPostPhys.7.5.065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.