×

Analysis of a stochastic predator-prey system with foraging arena scheme. (English) Zbl 1490.60145

Summary: This paper focuses on a predator-prey system with foraging arena scheme incorporating stochastic noises. This SDE model is generated from a deterministic framework by the stochastic parameter perturbation. We then study how the correlations of the environmental noises affect the long-time behaviours of the SDE model. Later on the existence of a stationary distribution is pointed out under certain parametric restrictions. Numerical simulations are carried out to substantiate the analytical results.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D25 Population dynamics (general)
34F05 Ordinary differential equations and systems with randomness

References:

[1] Ahrens, R. N.; Walters, C. J.; Christensen, V., Foraging arena theory, Fish. Fish., 13, 1, 41-59 (2012) · doi:10.1111/j.1467-2979.2011.00432.x
[2] Akcakaya, H. R.; Arditi, R.; Ginzburg, L. R., Ratio-dependent predation: An abstraction that works, Ecology, 76, 3, 995-1004 (1995) · doi:10.2307/1939362
[3] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biol., 139, 3, 311-326 (1989) · doi:10.1016/S0022-5193(89)80211-5
[4] Arditi, R.; Ginzburg, L. R., How Species Interact: Altering the Standard View on Trophic Ecology (2012), Oxford University Press: Oxford University Press, Newyork, NY
[5] Basener, B.; Ross, D. S., Booming and crashing populations and easter island, SIAM J. Appl. Math., 65, 2, 684-701 (2004) · Zbl 1068.92037 · doi:10.1137/S0036139903426952
[6] Cook, R., A rough guide to population change in exploited fish stocks, Ecol. Lett., 3, 5, 394-398 (2000) · doi:10.1046/j.1461-0248.2000.00168.x
[7] Crouse, D. T.; Crowder, L. B.; Caswell, H., A stage-based population model for loggerhead sea turtles and implications for conservation, Ecology, 68, 5, 1412-1423 (1987) · doi:10.2307/1939225
[8] Dieu, N. T.; Nguyen, D. H.; Du, N. H.; Yin, G., Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15, 2, 1062-1084 (2016) · Zbl 1343.34109
[9] Dieu, N. T.; Du, N. H.; Nguyen, H.; Yin, G., Protection zones for survival of species in random environment, SIAM J. Appl. Math., 76, 4, 1382-1402 (2016) · Zbl 1352.34069 · doi:10.1137/15M1032004
[10] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 3, 876-902 (2011) · Zbl 1263.34068 · doi:10.1137/10081856X
[11] Green, T. W.; Slone, D. H.; Swain, E. D.; Cherkiss, M. S.; Lohmann, M.; Mazzotti, F. J.; Rice, K. G., Evaluating effects of everglades restoration on american crocodile populations in south florida using a spatially-explicit, stage-based population model, Wetlands, 34, 1, 213-224 (2014) · doi:10.1007/s13157-012-0370-0
[12] Guzzetta, G.; Montarsi, F.; Baldacchino, F. A.; Metz, M.; Capelli, G.; Rizzoli, A.; Pugliese, A.; Rosà, R.; Poletti, P.; Merler, S., Potential risk of dengue and chikungunya outbreaks in northern italy based on a population model of aedes albopictus (diptera: Culicidae), PLoS Negl. Trop. Dis., 10, 6, e0004762 (2016) · doi:10.1371/journal.pntd.0004762
[13] He, R.; Xiong, Z.; Hong, D.; Yin, H., Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with markovian switching and Holling Type III functional response, Adv. Difference Equations, 2016, 1, 285 (2016) · Zbl 1418.92093 · doi:10.1186/s13662-016-1011-3
[14] Heath, M. R.; Speirs, D. C.; Steele, J. H., Understanding patterns and processes in models of trophic cascades, Ecol. Lett., 17, 1, 101-114 (2014)
[15] Hening, A.; Nguyen, D. H., Stochastic lotka-volterra food chains, J. Math. Biol., 77, 1, 135-163 (2018) · Zbl 1392.92075 · doi:10.1007/s00285-017-1192-8
[16] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
[17] Holling, C. S., Some Characteristics of Simple Types of Predation and Parasitism, Can. Entomol., 91, 7, 385-398 (1959) · doi:10.4039/Ent91385-7
[18] Ji, C.; Jiang, D., Dynamics of a stochastic density dependent predator-prey system with Beddington-Deangelis functional response, J. Math. Anal. Appl., 381, 1, 441-453 (2011) · Zbl 1232.34072 · doi:10.1016/j.jmaa.2011.02.037
[19] Ji, C.; Jiang, D.; Shi, N., Analysis of a predator-prey model with modified leslie-gower and Holling-Type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359, 2, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[20] Jost, C.; Arino, O.; Arditi, R., About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61, 1, 19-32 (1999) · Zbl 1323.92173 · doi:10.1006/bulm.1998.0072
[21] Kendall, B. E.; Bjørnstad, O. N.; Bascompte, J.; Keitt, T. H.; Fagan, W. F., Dispersal, environmental correlation, and spatial synchrony in population dynamics, Am. Nat., 155, 5, 628-636 (2000) · doi:10.1086/303350
[22] Khasminskii, R., Stochastic Stability of Differential Equations, Vol. 66 (2011), Springer Science & Business Media, Berlin
[23] Lafferty, K. D.; DeLeo, G.; Briggs, C. J.; Dobson, A. P.; Gross, T.; Kuris, A. M., A general consumer-resource population model, Science, 349, 6250, 854-857 (2015) · doi:10.1126/science.aaa6224
[24] Li, H.; Takeuchi, Y., Dynamics of the density dependent predator-prey system with Beddington-Deangelis functional response, J. Math. Anal. Appl., 374, 2, 644-654 (2011) · Zbl 1213.34097 · doi:10.1016/j.jmaa.2010.08.029
[25] Li, X.; Jiang, D.; Mao, X., Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232, 2, 427-448 (2009) · Zbl 1173.60020 · doi:10.1016/j.cam.2009.06.021
[26] Li, X.; Gray, A.; Jiang, D.; Mao, X., Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376, 1, 11-28 (2011) · Zbl 1205.92058 · doi:10.1016/j.jmaa.2010.10.053
[27] Liebhold, A.; Koenig, W. D.; Bjørnstad, O. N., Spatial synchrony in population dynamics, Annu. Rev. Ecol. Evol. Syst., 35, 467-490 (2004) · doi:10.1146/annurev.ecolsys.34.011802.132516
[28] Lindenmayer, D.; Possingham, H. P.; Lacy, R.; McCarthy, M.; Pope, M., How accurate are population models? lessons from landscape-scale tests in a fragmented system, Ecol. Lett., 6, 1, 41-47 (2003) · doi:10.1046/j.1461-0248.2003.00391.x
[29] Liu, Q.; Zu, L.; Jiang, D., Dynamics of stochastic predator-prey models with holling II functional response, Commun. Nonlinear Sci. Numer. Simul., 37, 62-76 (2016) · Zbl 1473.92028 · doi:10.1016/j.cnsns.2016.01.005
[30] Lv, J.; Wang, K., Asymptotic properties of a stochastic predator-prey system with holling II functional response, Commun. Nonlinear Sci. Numer. Simul., 16, 10, 4037-4048 (2011) · Zbl 1218.92072 · doi:10.1016/j.cnsns.2011.01.015
[31] Mao, X., Stochastic Differential Equations and Applications (2007), Amsterdam, The Netherlands, Elsevier · Zbl 1138.60005
[32] Mao, X., Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217, 12, 5512-5524 (2011) · Zbl 1215.65015
[33] Mao, X., Stationary distribution of stochastic population systems, Syst. Control Lett., 60, 6, 398-405 (2011) · Zbl 1387.60107 · doi:10.1016/j.sysconle.2011.02.013
[34] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian switching (2006), London, Imperial College Press · Zbl 1126.60002
[35] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97, 1, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[36] Mao, X.; Yuan, C.; Zou, J., Stochastic differential delay equations of population dynamics, J. Math. Anal. Appl., 304, 1, 296-320 (2005) · Zbl 1062.92055 · doi:10.1016/j.jmaa.2004.09.027
[37] McMullen, L. E.; De Leenheer, P.; Tonkin, J. D.; Lytle, D. A., High mortality and enhanced recovery: Modelling the countervailing effects of disturbance on population dynamics, Ecol. Lett., 20, 12, 1566-1575 (2017) · doi:10.1111/ele.12866
[38] Mirzaev, I. and Bortz, D.M., Criteria for linearized stability for a size-structured population model, preprint (2015). Available at arXiv:1502.02754.
[39] Morrison, T. A.; Estes, A. B.; Mduma, S. A.; Maliti, H. T.; Frederick, H.; Kija, H.; Mwita, M.; Sinclair, A.; Kohi, E. M., Informing aerial total counts with demographic models: population growth of serengeti elephants not explained purely by demography, Conserv. Lett., 11, 3, e12413 (2018) · doi:10.1111/conl.12413
[40] Rudnicki, R., Long-time behaviour of a stochastic prey-predator model, Stoch. Process. Appl., 108, 1, 93-107 (2003) · Zbl 1075.60539 · doi:10.1016/S0304-4149(03)00090-5
[41] Stott, I.; Townley, S.; Hodgson, D. J., A framework for studying transient dynamics of population projection matrix models, Ecol. Lett., 14, 9, 959-970 (2011) · doi:10.1111/j.1461-0248.2011.01659.x
[42] Walters, C.; Pauly, D.; Christensen, V.; Kitchell, J. F., Representing density dependent consequences of life history strategies in aquatic ecosystems: Ecosim II, Ecosystems, 3, 1, 70-83 (2000) · doi:10.1007/s100210000011
[43] Zhang, X.; Li, Y.; Jiang, D., Dynamics of a stochastic holling type II predator-prey model with hyperbolic mortality, Nonlinear Dyn., 87, 3, 2011-2020 (2017) · Zbl 1384.37119 · doi:10.1007/s11071-016-3172-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.