×

Gibbs measures based on 1d (an)harmonic oscillators as mean-field limits. (English) Zbl 1392.82023

Authors’ abstract: We prove that Gibbs measures based on 1D defocusing nonlinear Schrödinger functionals with sub-harmonic trapping can be obtained as the mean-field/large temperature limit of the corresponding grand-canonical ensemble for many bosons. The limit measure is supported on Sobolev spaces of negative regularity, and the corresponding density matrices are not trace-class. The general proof strategy is that of a previous paper of ours, but we have to complement it with Hilbert-Schmidt estimates on reduced density matrices.

MSC:

82B30 Statistical thermodynamics
35Q55 NLS equations (nonlinear Schrödinger equations)
46E39 Sobolev (and similar kinds of) spaces of functions of discrete variables
81V70 Many-body theory; quantum Hall effect

References:

[1] Ammari, Z.; Nier, F., Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincare, 9, 1503-1574 (2008) · Zbl 1171.81014 · doi:10.1007/s00023-008-0393-5
[2] Berezin, F. A., Convex functions of operators, Mat. Sb., 88, 130, 268-276 (1972) · Zbl 0271.47011
[3] Bhatia, R., Matrix Analysis (1997)
[4] Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166, 1-26 (1994) · Zbl 0822.35126 · doi:10.1007/bf02099299
[5] Bourgain, J., Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176, 421-445 (1996) · Zbl 0852.35131 · doi:10.1007/bf02099556
[6] Bourgain, J., Invariant measures for the Gross-Pitaevskii equation, J. Math. Pures Appl., 76, 649-702 (1997) · Zbl 0906.35095 · doi:10.1016/s0021-7824(97)89965-5
[7] Bourgain, J.; Bulut, A., Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball. I: The 2D case, Ann. Inst. Henri Poincare, 31, 1267-1288 (2014) · Zbl 1307.35272 · doi:10.1016/j.anihpc.2013.09.002
[8] Bourgain, J.; Bulut, A., Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball. II: The 3D case, J. Euro. Math. Soc., 16, 1289-1325 (2014) · Zbl 1301.35145 · doi:10.4171/jems/461
[9] Bratelli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics II: Equilibrium States. Models in Quantum Statistical Mechanics (2002)
[10] Burq, N.; Thomann, L.; Tzvetkov, N., Gibbs measures for the non linear harmonic oscillator, J. EDP Évian (2009)
[11] Burq, N.; Thomann, L.; Tzvetkov, N., Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier, 63, 2137-2198 (2013) · Zbl 1317.35226 · doi:10.5802/aif.2825
[12] Burq, N.; Tzvetkov, N., Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173, 449-475 (2008) · Zbl 1156.35062 · doi:10.1007/s00222-008-0124-z
[13] Cacciafesta, F.; de Suzzoni, A.-S., Invariant measure for the Schrödinger equation on the real line, J. Funct. Anal., 269, 271-324 (2015) · Zbl 1317.35227 · doi:10.1016/j.jfa.2015.04.021
[14] Da Prato, G.; Debbussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab., 31, 1900-1916 (2003) · Zbl 1071.81070 · doi:10.1214/aop/1068646370
[15] de Bouard, A., Debussche, A., and Fukuizumi, R., “Long time behavior of Gross-Pitaevskii equation at positive temperature,” e-print (2017). · Zbl 1406.35376
[16] Dereziński, J.; Gérard, C., Mathematics of Quantization and Quantum Fields (2013) · Zbl 1271.81004
[17] Dolbeault, J.; Felmer, P.; Loss, M.; Paturel, E., Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., 238, 193-220 (2006) · Zbl 1104.35021 · doi:10.1016/j.jfa.2005.11.008
[18] Fernique, X., Intégrabilité des vecteurs Gaussiens, C. R. Acad. Sci. Paris Sér. A-B, 270, A1698-A1699 (1970) · Zbl 0206.19002
[19] Fröhlich, J., Knowles, A., Schlein, B., and Sohinger, V., “Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimensions d \(<mml:math display=''inline`` overflow=''scroll``> 3\),” e-print (2016).
[20] Fröhlich, J., Knowles, A., Schlein, B., and Sohinger, V., “A microscopic derivation of time-dependent correlation functions of the 1D cubic nonlinear Schrödinger equation,” e-print (2017). · Zbl 1421.82022
[21] Fröhlich, J.; Park, Y. M., Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Commun. Math. Phys., 59, 235-266 (1978) · doi:10.1007/bf01611505
[22] Fröhlich, J.; Park, Y. M., Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. II. Bose-Einstein and Fermi-Dirac Statistics, J. Stat. Phys., 23, 701-753 (1980) · doi:10.1007/bf01008516
[23] Ginibre, J., Reduced density matrices for quantum gases. I. Limit of infinite volume, J. Math. Phys., 6, 238-251 (1965) · Zbl 0129.43601 · doi:10.1063/1.1704275
[24] Ginibre, J., Reduced density matrices for quantum gases. II. Cluster property, J. Math. Phys., 6, 252-262 (1965) · Zbl 0129.43601 · doi:10.1063/1.1704276
[25] Ginibre, J., Reduced density matrices for quantum gases. III. Hard-core potentials, J. Math. Phys., 6, 1432-1446 (1965) · Zbl 0129.43601 · doi:10.1063/1.1704795
[26] Glimm, J.; Jaffe, A., Quantum Physics: A Functional Integral Point of View (1987)
[27] Hainzl, C.; Lewin, M.; Solovej, J. P., The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., 221, 488-546 (2009) · Zbl 1165.81042 · doi:10.1016/j.aim.2008.12.011
[28] Koch, H.; Tataru, D., \(L^p\) eigenfunction bounds for the Hermite operator, Duke Math. J., 128, 369-392 (2005) · Zbl 1075.35020 · doi:10.1215/s0012-7094-04-12825-8
[29] Koch, H.; Tataru, D.; Zworski, M., Semiclassical \(L^p\) estimates, Ann. Henri Poincare, 8, 885-916 (2007) · Zbl 1133.58025 · doi:10.1007/s00023-006-0324-2
[30] Lebowitz, J. L.; Rose, H. A.; Speer, E. R., Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., 50, 657-687 (1988) · Zbl 0925.35142 · doi:10.1007/bf01026495
[31] Lewin, M., Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260, 3535-3595 (2011) · Zbl 1216.81180 · doi:10.1016/j.jfa.2010.11.017
[32] Lewin, M., Nam, P., and Rougerie, N., “Bose gases at positive temperature and non-linear Gibbs measures,” preprint (2016). · Zbl 1392.35245
[33] Lewin, M.; Nam, P. T.; Rougerie, N., Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., 254, 570-621 (2014) · Zbl 1316.81095 · doi:10.1016/j.aim.2013.12.010
[34] Lewin, M.; Nam, P. T.; Rougerie, N., Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Ec. Polytech., 2, 65-115 (2016) · Zbl 1322.81082 · doi:10.5802/jep.18
[35] Lieb, E. H., The classical limit of quantum spin systems, Commun. Math. Phys., 31, 327-340 (1973) · Zbl 1125.82305 · doi:10.1007/bf01646493
[36] Lieb, E. H.; Loss, M., Analysis (2001) · Zbl 0966.26002
[37] Ohya, M.; Petz, D., Quantum Entropy and Its Use (1993) · Zbl 0891.94008
[38] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis (1972) · Zbl 0242.46001
[39] Reed, M., Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness (1975) · Zbl 0308.47002
[40] Rockner, M., Zhu, R., and Zhu, X., “Ergodicity for the stochastic quantization problems on the 2D-torus,” e-print (2016). · Zbl 1376.81045
[41] Rougerie, N., “De Finetti theorems, mean-field limits and Bose-Einstein condensation,” e-print (2014), LMU lecture notes.
[42] Rougerie, N., Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein (Spartacus IDH, Paris, 2016), Les cours Peccot.
[43] Rougerie, N., From bosonic grand-canonical ensembles to nonlinear Gibbs measures, Semin. Laurent Schwartz (2014) · Zbl 1353.35269 · doi:10.5802/slsedp.71
[44] Simon, B., The P(Φ)\(_2\) Euclidean (Quantum) Field Theory (1974) · Zbl 1175.81146
[45] Simon, B., Trace Ideals and Their Applications (1979) · Zbl 0423.47001
[46] Simon, B., The classical limit of quantum partition functions, Commun. Math. Phys., 71, 247-276 (1980) · Zbl 0436.22012 · doi:10.1007/bf01197294
[47] Simon, B., Functional Integration and Quantum Physics (2005) · Zbl 1061.28010
[48] Skorokhod, A., Integration in Hilbert Space (1974) · Zbl 0307.28010
[49] Thomann, L. and Oh, T., “A pedestrian approach to the invariant Gibbs measures for the 2D defocusing nonlinear Schrödinger equations,” e-print (2015). · Zbl 1421.35340
[50] Thomann, L.; Tzvetkov, N., Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, 23, 2771 (2010) · Zbl 1204.35154 · doi:10.1088/0951-7715/23/11/003
[51] Tsatsoulis, P. and Weber, H., “Spectral gap for the stochastic quantization equation on the 2-dimensional torus,” e-print (2016). · Zbl 1403.81030
[52] Tzvetkov, N., Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier, 58, 2543-2604 (2008) · Zbl 1171.35116 · doi:10.5802/aif.2422
[53] Velo, G.; Wightman, A., Constructive Quantum Field Theory: The 1973 Ettore Majorana International School of Mathematical Physics (1973) · Zbl 0325.00006
[54] Wehrl, A., General properties of entropy, Rev. Mod. Phys., 50, 221-260 (1978) · Zbl 0484.70014 · doi:10.1103/revmodphys.50.221
[55] Yajima, K.; Zhang, G., Smoothing property for Schrödinger equations with potential superquadratic at infinity, Commun. Math. Phys., 221, 573-590 (2001) · Zbl 1102.35320 · doi:10.1007/s002200100483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.