×

Explicit formulae for integro-differential operational matrices. (English) Zbl 1506.42034

Summary: In this work we deduce explicit formulae for the elements of the matrices representing the action of integro-differential operators over the coefficients of generalized Fourier series. Our formulae are obtained by performing operations on the bases of orthogonal polynomials and result directly from the three-term recurrence relation satisfied by the polynomials. Moreover we give exact formulae for the coefficients for some families of orthogonal polynomials. Some tests are given to demonstrate the robustness of the formulas presented.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
47G20 Integro-differential operators
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

Tau Toolbox; DLMF
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables (1974), New York: Dover Publications, New York · Zbl 0171.38503
[2] Chang, RY; Wang, ML, Shifted Legendre direct method for variational problems, J. Optim. Theory Appl., 39, 2, 299-307 (1983) · Zbl 0481.49004 · doi:10.1007/BF00934535
[3] Doha, E.; Ahmed, H., On the coefficients of integrated expansions of Bessel polynomials, J. Comput. Appl. Math., 187, 1, 58-71 (2006) · Zbl 1076.42021 · doi:10.1016/j.cam.2005.03.036
[4] Doha, EH, Explicit formulae for the coefficients of integrated expansions of Jacobi polynomials and their integrals, Integr. Transforms Spec. Funct., 14, 1, 69-86 (2003) · Zbl 1051.33004 · doi:10.1080/10652460304541
[5] Dongarra, J.; Straughan, B.; Walker, D., Chebyshev tau-qz algorithm methods for calculating spectra of hydrodynamic stability problems, Appl. Numer. Math., 22, 4, 399-434 (1996) · Zbl 0867.76025 · doi:10.1016/S0168-9274(96)00049-9
[6] Greengard, L., Spectral integration and two-point boundary value problems, SIAM J. Numer. Anal., 28, 4, 1071-1080 (1991) · Zbl 0731.65064 · doi:10.1137/0728057
[7] Koepf, W., Identities for families of orthogonal polynomials and special functions, Integr. Transforms Spec. Funct., 5, 1-2, 69-102 (1997) · Zbl 0895.33002 · doi:10.1080/10652469708819127
[8] Koepf, W.; Schmersau, D., Representations of orthogonal polynomials, J. Comput. Appl. Math., 90, 1, 57-94 (1998) · Zbl 0907.65017 · doi:10.1016/S0377-0427(98)00023-5
[9] Kong, W.; Wu, X., Chebyshev tau matrix method for Poisson-type equations in irregular domain, J. Comput. Appl. Math., 228, 1, 158-167 (2009) · Zbl 1165.65081 · doi:10.1016/j.cam.2008.09.011
[10] Krall, HL; Frink, O., A new class of orthogonal polynomials: the Bessel polynomials, Trans. Am. Math. Soc., 65, 1, 100-115 (1949) · Zbl 0031.29701 · doi:10.1090/S0002-9947-1949-0028473-1
[11] Matos, JC; Matos, JMA; Rodrigues, MJ, Solving differential and integral equations with Tau method, Math. Comput. Sci., 12, 2, 197-205 (2018) · Zbl 1402.65078 · doi:10.1007/s11786-018-0334-8
[12] Matos, JMA; Rodrigues, MJ, Almost exact computation of eigenvalues in approximate differential problems, Math. Comput. Appl., 24, 4, 96 (2019)
[13] Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.17 of 2017-12-22, 2010
[14] Ortiz, EL; Samara, H., An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing, 27, 1, 15-25 (1981) · Zbl 0449.65053 · doi:10.1007/BF02243435
[15] Phillips, TN, On the Legendre coefficients of a general-order derivative of an infinitely differentiable function, IMA J. Numer. Anal., 8, 4, 455-459 (1988) · Zbl 0667.42011 · doi:10.1093/imanum/8.4.455
[16] Shaban, M.; Kazem, S.; Rad, J., A modification of the homotopy analysis method based on Chebyshev operational matrices, Math. Comput. Modell., 57, 5, 1227-1239 (2013) · doi:10.1016/j.mcm.2012.09.024
[17] Singh, S.; Patel, VK; Singh, VK, Operational matrix approach for the solution of partial integro-differential equation, Appl. Math. Comput., 283, 195-207 (2016) · Zbl 1410.65467
[18] Singh, S.; Patel, VK; Singh, VK, Convergence rate of collocation method based on wavelet for nonlinear weakly singular partial integro-differential equation arising from viscoelasticity, Numer. Methods Part. Differ. Equ., 34, 5, 1781-1798 (2018) · Zbl 1417.65181 · doi:10.1002/num.22245
[19] Singh, S.; Patel, VK; Singh, VK; Tohidi, E., Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl. Math. Comput., 298, 310-321 (2017) · Zbl 1411.65139
[20] Singh, VK; Postnikov, EB, Operational matrix approach for solution of integro-differential equations arising in theory of anomalous relaxation processes in vicinity of singular point, Appl. Math. Model., 37, 10, 6609-6616 (2013) · Zbl 1426.65220 · doi:10.1016/j.apm.2012.09.075
[21] Vasconcelos, PB; Matos, J.; Trindade, MS, Spectral Lanczos’ Tau Method for Systems of Nonlinear Integro-Differential Equations, 305-314 (2017), Cham: Springer, Cham · Zbl 1404.65335
[22] Vasconcelos, PB; Matos, J.; Trindade, MS, Dealing with non-polynomial coefficients within Tau method, Math. Comput. Sci., 12, 2, 183-195 (2018) · Zbl 1416.65554 · doi:10.1007/s11786-018-0331-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.