×

Solving differential eigenproblems via the spectral Tau method. (English) Zbl 07676502

Summary: The spectral Tau method to compute eigenpairs of ordinary differential equations is implemented as part of the Tau Toolbox – a numerical library for the solution of integro-differential problems. This mathematical software enables a symbolic syntax to be applied to objects to manipulate and solve differential problems with ease and accuracy. The library is explained in detail and its application to various problems is illustrated: numerical approximations for linear, quadratic, and nonlinear differential eigenvalue problems.

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
34B24 Sturm-Liouville theory

References:

[1] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van Der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM (2000). doi:10.1137/1.9780898719581 · Zbl 0965.65058
[2] Bailey, PB; Everitt, WN; Zettl, A., Algorithm 810: the sleign2 Sturm-Liouville code, ACM Trans. Math. Softw., 27, 2, 143-192 (2001) · Zbl 1070.65576 · doi:10.1145/383738.383739
[3] Boyd, J.: Chebyshev and Fourier spectral methods. Dover publications Inc (2000)
[4] Bridges, TJ; Morris, PJ, Differential eigenvalue problems in which the parameter appears nonlinearly, J. Comput. Phys., 55, 3, 437-460 (1984) · Zbl 0543.65063 · doi:10.1016/0021-9991(84)90032-9
[5] Butler, KM; Farrell, BF, Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A-Fluid, 4, 8, 1637-1650 (1992) · doi:10.1063/1.858386
[6] Charalambides, M.; Waleffe, F., Gegenbauer Tau methods with and without spurious eigenvalues, SIAM J. Numer. Anal., 47, 1, 48-68 (2009) · Zbl 1201.65133 · doi:10.1137/070704228
[7] Chaves, T.; Ortiz, EL, On the numerical solution of two-point boundary value problems for linear differential equations, Z Angew Math. Mech., 48, 6, 415-418 (1968) · Zbl 0172.19601 · doi:10.1002/zamm.19680480607
[8] Dawkins, PT; Dunbar, SR; Douglass, RW, The origin and nature of spurious eigenvalues in the spectral Tau method, J. Comput. Phys., 147, 2, 441-462 (1998) · Zbl 0924.65077 · doi:10.1006/jcph.1998.6095
[9] Dongarra, J.; Straughan, B.; Walker, D., Chebyshev Tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems, Appl. Numer. Math., 22, 4, 399-434 (1996) · Zbl 0867.76025 · doi:10.1016/S0168-9274(96)00049-9
[10] Driscoll, TA; Hale, N., Rectangular spectral collocation, IMA J. Numer. Anal., 36, 1, 108-132 (2016) · Zbl 1334.65119
[11] Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide (2014)
[12] Gardner, DR; Trogdon, SA; Douglass, RW, A modified Tau spectral method that eliminates spurious eigenvalues, J. Comput. Phys., 80, 1, 137-167 (1989) · Zbl 0661.65084 · doi:10.1016/0021-9991(89)90093-4
[13] Gheorghiu, CI, Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations, Computation, 9, 2, 2 (2021)
[14] Gheorghiu, C.I., Pop, I.S.: A modified chebyshev-tau method for a hydrodynamic stability problem. In: Stancu, D.D. (ed.) Approximation and optimization. Transilvania Press, Cluj-Napoca, pp. 119-126 (1996) · Zbl 0888.76065
[15] Gheorghiu, CI; Rommes, J., Application of the Jacobi-Davidson method to accurate analysis of singular linear hydrodynamic stability problems, Int. J. Numer. Methods Fluids, 71, 3, 358-369 (2012) · Zbl 1430.76392 · doi:10.1002/fld.3669
[16] Greenberg, L.; Marletta, M., Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems, ACM T. Math. Softw., 23, 4, 453-493 (1997) · Zbl 0912.65073 · doi:10.1145/279232.279231
[17] Güttel, S.; Tisseur, F., The nonlinear eigenvalue problem, Acta Numerica, 26, 1-94 (2017) · Zbl 1377.65061 · doi:10.1017/S0962492917000034
[18] Güttel, S.; van Beeumen, R.; Meerbergen, K.; Michiels, W., NLEIGS: a class of fully rational Krylov methods for nonlinear eigenvalue problems, SIAM J. Sci. Comput., 36, 6, A2842-A2864 (2014) · Zbl 1321.47128 · doi:10.1137/130935045
[19] Hammarling, S.; Munro, CJ; Tisseur, F., An algorithm for the complete solution of quadratic eigenvalue problems, ACM T. Math. Softw., 39, 3, 1-19 (2013) · Zbl 1295.65060 · doi:10.1145/2450153.2450156
[20] Lanczos, C., Trigonometric interpolation of empirical and analytical functions, J. Math. Phys., 17, 1-4, 123-199 (1938) · Zbl 0020.01301 · doi:10.1002/sapm1938171123
[21] Ledoux, V.; Daele, MV; Berghe, GV, Matslise: a MATLAB package for the numerical solution of Sturm-Liouville and schrödinger equations, ACM Trans. Math. Softw. (TOMS), 31, 4, 532-554 (2005) · Zbl 1136.65327 · doi:10.1145/1114268.1114273
[22] Malik, M.; Huy, DH, Vibration analysis of continuous systems by differential transformation, Appl. Math. Comput., 96, 1, 17-26 (1998) · Zbl 0969.74539
[23] Matos, JMA; Rodrigues, MJ; Matos, JC, Explicit formulae for integro-differential operational matrices, Math. Comput. Sci., 15, 45-61 (2021) · Zbl 1506.42034 · doi:10.1007/s11786-020-00465-1
[24] McFadden, GB; Murray, BT; Boisvert, RF, Elimination of spurious eigenvalues in the Chebyshev Tau spectral method, J. Comput. Phys., 91, 1, 228-239 (1990) · Zbl 0717.65063 · doi:10.1016/0021-9991(90)90012-P
[25] Moler, CB; Stewart, GW, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10, 2, 241-256 (1973) · Zbl 0253.65019 · doi:10.1137/0710024
[26] Olver, S.; Townsend, A., A fast and well-conditioned spectral method, SIAM Rev., 55, 3, 462-489 (2013) · Zbl 1273.65182 · doi:10.1137/120865458
[27] Orszag, SA, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, 4, 689 (1971) · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[28] Ortiz, EL; Samara, H., An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing, 27, 15-26 (1981) · Zbl 0449.65053 · doi:10.1007/BF02243435
[29] Ortiz, EL; Samara, H., Numerical solution of differential eigenvalue problems with an operational approach to the Tau method, Computing, 31, 2, 95-103 (1983) · Zbl 0508.65045 · doi:10.1007/BF02259906
[30] Pruess, S.; Fulton, CT, Mathematical software for Sturm-Liouville problems, ACM Trans. Math. Softw. (TOMS), 19, 3, 360-376 (1993) · Zbl 0890.65087 · doi:10.1145/155743.155791
[31] Pryce, JD, Error control of phase-function shooting methods for Sturm-Liouville problems, IMA J. Numer. Anal., 6, 1, 103-123 (1986) · Zbl 0591.65057 · doi:10.1093/imanum/6.1.103
[32] Pryce, JD; Marletta, M., A new multi-purpose software package for Schrödinger and Sturm-Liouville computations, Comput. Phys. Commun., 62, 1, 42-52 (1991) · Zbl 0875.65141 · doi:10.1016/0010-4655(91)90119-6
[33] Reddy, SC; Henningson, DS, Energy growth in viscous channel flows, J. Fluid Mech., 252, 209-238 (1993) · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[34] Reddy, SC; Schmid, PJ; Henningson, DS, Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math., 53, 1, 15-47 (1993) · Zbl 0778.34060 · doi:10.1137/0153002
[35] Rommes, J., Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = λBx with singular B, Math. Comput., 77, 262, 995-1016 (2007) · Zbl 1133.65020 · doi:10.1090/S0025-5718-07-02040-6
[36] Solov’ëv, SI, Preconditioned Iterative methods for a class of nonlinear eigenvalue problems, Linear Algebra Appl., 415, 1, 210-229 (2006) · Zbl 1095.65033 · doi:10.1016/j.laa.2005.03.034
[37] Tisseur, F.; Higham, NJ, Structured pseudospectra for polynomial eigenvalue problems, with applications, SIAM J. Matrix Anal. Appl., 23, 1, 187-208 (2001) · Zbl 0996.65042 · doi:10.1137/S0895479800371451
[38] Trindade, M.; Matos, J.; Vasconcelos, PB, Towards a Lanczos’ τ-method toolkit for differential problems, Math Comp. Sci., 10, 3, 313-329 (2016) · Zbl 1353.65083 · doi:10.1007/s11786-016-0269-x
[39] Yuan, S.; Ye, K.; Xiao, C.; Kennedy, D.; Williams, F., Solution of regular second-and fourth-order Sturm-Liouville problems by exact dynamic stiffness method analogy, J. Eng. Math., 86, 1, 157-173 (2014) · Zbl 1356.70027 · doi:10.1007/s10665-013-9646-5
[40] Zebib, A., Removal of spurious modes encountered in solving stability problems by spectral methods, J. Comput. Phys., 70, 2, 521-525 (1987) · Zbl 0612.65049 · doi:10.1016/0021-9991(87)90193-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.