×

A fourth-order difference scheme for the fractional nonlinear Schrödinger equation with wave operator. (English) Zbl 1490.65159

Summary: In this paper, an efficient semi-implicit difference scheme for solving the fractional nonlinear Schrödinger equation with wave operator are proposed and analyzed. The semi-implicit scheme involves three-time levels, is unconditionally stable and fourth-order accurate in space and second-order accurate in time. Furthermore, the unique solvability, unconditional stability and convergence of the method in the \(L^\infty\)-norm are proved rigorously by the energy method. Finally, numerical experiments are presented to confirm our theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bao, W.; Cai, Y., Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J Numer Anal, 50, 492-521 (2012) · Zbl 1246.35188
[2] Machihara, S.; Nakanishi, K.; Ozawa, T., Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math Ann, 322, 603-621 (2002) · Zbl 0991.35080
[3] Schoene, A., On the nonrelativistic limits of the Klein-Gordon and Dirac equations, J Math Anal Appl, 71, 36-47 (1979) · Zbl 0427.35063
[4] Tsutsumi, M., Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions, Nonlinear Anal-Theor, 8, 637-643 (1984) · Zbl 0547.35111
[5] Berg, L.; Colin, T., A singular perturbation problem for an envelope equation in plasma physics, Physica D, 84, 437-459 (1995) · Zbl 0884.35097
[6] Colin, T.; Fabrie, P., Semidiscretization in time for nonlinear Schrödinger-waves equations, Discret Contin Dyn Syst, 4, 671-690 (1998) · Zbl 0976.76054
[7] Bao, W.; Dong, X.; Xin, J., Comparisons between sine-Gordon and perturbed nonlinear Schrödinger equations for modeling light bullets beyond critical collapse, Physica D, 239, 1120-1134 (2010) · Zbl 1190.35205
[8] Xin, J., Modeling light bullets with the two-dimensional sine-Gordon equation, Physica D, 135, 345-368 (2000) · Zbl 0936.78006
[9] Laskin, N., Fractional quantum mechanics, Phys Rev E, 62, 3135-3145 (2000)
[10] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun Math Phys, 317, 563-591 (2013) · Zbl 1258.35182
[11] Fröhlich, J.; Jonsson, BLG; Lenzmann, E., Boson stars as solitary waves, Commun Math Phys, 274, 1-30 (2007) · Zbl 1126.35064
[12] Lenzmann, E., Well-posedness for semi-relativistic Hartree equations of critical type, Math Phys Anal Geom, 10, 43-64 (2007) · Zbl 1171.35474
[13] Ionescu, AD; Pusateri, F., Nonlinear fractional Schrödinger equations in one dimension, J Funct Anal, 266, 139-176 (2014) · Zbl 1304.35749
[14] Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme, Appl Math Comput, 71, 165-177 (1995) · Zbl 0832.65136
[15] He, D.; Pan, K., An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions, Comput Math Appl, 73, 2360-2374 (2017) · Zbl 1373.65056
[16] Thalhammer, M., High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J Numer Anal, 26, 2022-2038 (2008) · Zbl 1170.65061
[17] Bao, W.; Jaksch, D.; Markowich, P., Numercial solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J Comput Phys, 187, 318-342 (2003) · Zbl 1028.82501
[18] Bao, W.; Li, H.; Shen, J., A generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating bose-Einstein condensates, SIAM J Sci Comput, 31, 3685-3711 (2009) · Zbl 1205.82096
[19] Hu, H.; Xie, S., A high accurate and conservative difference scheme for a class of nonlinear Schrödinger equation with wave operator, Appl Math-J Chin Univ Ser B, 29, 36-43 (2014) · Zbl 1313.65216
[20] Zhang, L.; Chang, Q., A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl Math Comput, 145, 603-612 (2003) · Zbl 1037.65092
[21] Wang, T.; Zhang, L., Analysis of some new conservative scheme for nonlinear Schrödinger equation with wave operator, Appl Math Comput, 182, 1780-149 (2006) · Zbl 1161.65349
[22] Li, X.; Zhang, L.; Wang, S., A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator, Appl Math Comput, 219, 3187-3197 (2012) · Zbl 1309.65099
[23] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J Comput Phys, 293, 238-251 (2015) · Zbl 1349.65346
[24] Wang, P.; Huang, C., A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer Algorithms, 69, 625-641 (2015) · Zbl 1325.65127
[25] Wang, P.; Huang, C.; Zhao, L., Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J Comput Appl Math, 306, 231-247 (2016) · Zbl 1382.65260
[26] Pan, K.; Jin, X.; He, D., Pointwise error estimates of a linearized difference scheme for strongly coupled fractional Ginzburg-Landau equations, Math Methods Appl Sci, 43, 512-535 (2020) · Zbl 1444.65049
[27] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-Dimensional nonlinear space fractional schrödinger equation, SIAM J Sci Comput, 36, A2865-A2886 (2014) · Zbl 1328.65187
[28] Wang, D.; Xiao, A.; Yang, W., Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J Comput Phys, 242, 670-681 (2013) · Zbl 1297.65100
[29] Ran, M.; Zhang, C., A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator, Int J Comput Math, 93, 1103-1118 (2015) · Zbl 1390.65079
[30] Li, M.; Zhao, Y., A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl Math Comput, 338, 758-773 (2018) · Zbl 1427.65253
[31] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun Math Phys, 317, 563-591 (2013) · Zbl 1258.35182
[32] Wang, P.; Huang, C., An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation, J Comput Phys, 312, 31-49 (2016) · Zbl 1351.76191
[33] Sun, H.; Sun, Z.; Gao, G., Some high order difference schemes for the space and time fractional Bloch-Torrey equations, Appl Math Comput, 281, 356-380 (2016) · Zbl 1410.65329
[34] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximation for solving space fractional diffusion equations, Math Comput, 84, 1703-1727 (2015) · Zbl 1318.65058
[35] Zhou, H.; Tian, W.; Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J Sci Comput, 56, 45-66 (2013) · Zbl 1278.65130
[36] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl Math Model, 34, 200-218 (2010) · Zbl 1185.65200
[37] Ortigueira, M., Riesz potential operators and inverses via fractional centred derivatives, Int J Math Math Sci, 48391, 1-12 (2006) · Zbl 1122.26007
[38] Celik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J Comput Phys, 231, 1743-1750 (2012) · Zbl 1242.65157
[39] Yue, X.; Shu, S.; Xu, X., Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations, Comput Math Appl, 78, 3471-3484 (2019) · Zbl 1443.65231
[40] He, D.; Pan, K., An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau, Numer Algorithms, 79, 899-925 (2018) · Zbl 1402.65088
[41] He, D.; Pan, K., Maximum norm error analysis of an unconditionally stable semi-implicit scheme for multi-dimensional Allen-Cahn equations, Numer Methods Partial Differ Equ, 35, 955-975 (2019) · Zbl 1418.65099
[42] Cai, W.; He, D.; Pan, K., A linearized energy-conservative finite element method for the nonlinear Schrödinger equation with wave operator, Appl Numer Math, 140, 183-198 (2019) · Zbl 1432.65144
[43] He, D.; Pan, K.; Yue, X., A positivity preserving and free energy dissipative difference scheme for the poisson-Nernst-Planck system, J Sci Comput, 81, 436-458 (2019) · Zbl 1427.65165
[44] Holte, JM.Discrete Gronwall lemma and applications. MAA-NCS Meeting at the University of North Dakota. 2009;24:1-7.
[45] Zhang, X.; Sun, Z.; Wang, T., Convergence analysis of a linearied Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer Methods Partial Differ Equ, 29, 1487-1503 (2013) · Zbl 1274.65262
[46] Yin, B, Wang, J, Liu, Y, et al.A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations. J Comput Phys. 2020;109869.
[47] Zhang, Q.; Lin, X.; Pan, K., Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation, Comput Math Appl, 80, 1201-1220 (2020) · Zbl 1447.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.