×

Higher order Kirillov-Reshetikhin modules for \(\mathbf{U}_q(A_{n}^{(1)})\), imaginary modules and monoidal categorification. (English) Zbl 1534.17012

In this paper the authors study higher order versions of Kirillov-Reshetikhin modules (KR-modules) for a quantum loop algebra associated to a simple Lie algebra of type \(A_n\). They also study the relations between higher order KR-modules and the work on monoidal categorification of cluster algebras of D. Hernandez and B. Leclerc [Duke Math. J. 154, No. 2, 265–341 (2010; Zbl 1284.17010)]. The results obtained are applied to give a systematic way to construct imaginary modules, where ’imaginary’, for a finite-dimensional irreducible module, means that its tensor square is not irreducible. In fact, it is shown that the tensor product of a (higher order) KR-module with its dual always contains an imaginary module in its Jordan-Hölder series.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Citations:

Zbl 1284.17010

References:

[1] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839-867. · Zbl 0915.17011
[2] M. Brito and V. Chari, Tensor products and q-characters of HL-modules and monoidal categorifications, J. Éc. polytech. Math. 6 (2019), 581-619. · Zbl 1446.17026
[3] M. Brito, V. Chari, D. Kus and R. Venkatesh, Quantum affine algebras, graded limits and flags, J. Indian Inst. Sci. 102 (2022), no. 3, 1001-1031. · Zbl 1542.81483
[4] V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. IMRN 2002 (2002), no. 7, 357-382. · Zbl 0990.17009
[5] V. Chari and A. A. Moura, Spectral characters of finite-dimensional representations of affine algebras, J. Algebra 279 (2004), no. 2, 820-839. · Zbl 1195.17018
[6] V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261-283. · Zbl 0739.17004
[7] V. Chari and A. Pressley, A guide to quantum groups, Cambridge University, Cambridge 1994. · Zbl 0839.17009
[8] V. Chari and A. Pressley, Quantum affine algebras and their representations, Representations of groups (Banff 1994), CMS Conf. Proc. 16, American Mathematical Society, Providence (1995), 59-78. · Zbl 0855.17009
[9] V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191-223. · Zbl 0989.17019
[10] I. Damiani, La R-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), no. 4, 493-523. · Zbl 0911.17005
[11] P. Di Francesco and R. Kedem, Quantum cluster algebras and fusion products, Int. Math. Res. Not. IMRN 2014 (2014), no. 10, 2593-2642. · Zbl 1370.17008
[12] B. Duan, J.-R. Li and Y.-F. Luo, Cluster algebras and snake modules, J. Algebra 519 (2019), 325-377. · Zbl 1436.13047
[13] P. D. Francesco and R. Kedem, Proof of the combinatorial Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. IMRN 2008 (2008), no. 7, Article ID rnn006. · Zbl 1233.17010
[14] E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23-57. · Zbl 1051.17013
[15] E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of \mathcal{W}-algebras, Recent developments in quantum affine algebras and related topics (Raleigh 1998), Contemp. Math. 248, American Mathematical Society, Providence (1999), 163-205. · Zbl 0973.17015
[16] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics (Raleigh 1998), Contemp. Math. 248, American Mathematical Society, Providence (1999), 243-291. · Zbl 1032.81015
[17] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. reine angew. Math. 596 (2006), 63-87. · Zbl 1160.17010
[18] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265-341. · Zbl 1284.17010
[19] D. Hernandez and B. Leclerc, Monoidal categorifications of cluster algebras of type A and D, Symmetries, integrable systems and representations, Springer Proc. Math. Stat. 40, Springer, Heidelberg (2013), 175-193. · Zbl 1317.13052
[20] D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 5, 1113-1159. · Zbl 1405.17028
[21] D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm, Adv. Math. 347 (2019), 192-272. · Zbl 1448.17019
[22] S.-J. Kang, M. Kashiwara, M. Kim and S.-J. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), no. 2, 377-396. · Zbl 1366.17014
[23] R. Kedem, A pentagon of identities, graded tensor products, and the Kirillov-Reshetikhin conjecture, New trends in quantum integrable systems, World Scientific, Hackensack (2011), 173-193. · Zbl 1221.82037
[24] A. N. Kirillov and N. Y. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), no. 8, 211-221, 301. · Zbl 0637.16007
[25] E. Lapid and A. Mínguez, Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field, Adv. Math. 339 (2018), 113-190. · Zbl 1400.20047
[26] B. Leclerc, Imaginary vectors in the dual canonical basis of U_q(\mathfrak{n}), Transform. Groups 8 (2003), no. 1, 95-104. · Zbl 1044.17009
[27] E. Mukhin and C. A. S. Young, Extended T-systems, Selecta Math. (N. S.) 18 (2012), no. 3, 591-631. · Zbl 1326.17014
[28] E. Mukhin and C. A. S. Young, Path description of type B q-characters, Adv. Math. 231 (2012), no. 2, 1119-1150. · Zbl 1323.17015
[29] H. Nakajima, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259-274. · Zbl 1078.17008
[30] H. Nakajima, Quiver varieties and t-analogs of q-characters of quantum affine algebras, Ann. of Math. (2) 160 (2004), no. 3, 1057-1097. · Zbl 1140.17015
[31] M. Okado, A. Schilling and T. Scrimshaw, Rigged configuration bijection and proof of the X=M conjecture for nonexceptional affine types, J. Algebra 516 (2018), 1-37. · Zbl 1437.17008
[32] A. Schilling and Q. Wang, Promotion operator on rigged configurations of type A, Electron. J. Combin. 17 (2010), no. 1, Research Paper 24. · Zbl 1193.05162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.