×

Analysis of the SAITS alcoholism model on scale-free networks with demographic and nonlinear infectivity. (English) Zbl 1447.92490

Summary: A more realistic alcoholism model on scale-free networks with demographic and nonlinear infectivity is introduced in this paper. The basic reproduction number \(R_0\) is derived from the next-generation method. Global stability of the alcohol-free equilibrium is obtained. The persistence of our model is also derived. Furthermore, the SAITS model with nonlinear infectivity is also investigated. Stability of all the equilibria and persistence are also obtained. Some numerical simulations are also presented to verify and extend our theoretical results.

MSC:

92D30 Epidemiology
91D20 Mathematical geography and demography
91D30 Social networks; opinion dynamics

References:

[1] R. Bani, R. Hameed, and S. Szymanowski, Influence of environmental factors on college alcohol drinking patterns, Commun. Nonlinear Sci. Numer. Simul. 10 (2013), pp. 1281-1300. [Google Scholar] · Zbl 1273.92043
[2] A.L. Barabasi, R. Albert, Emergence of scaling in random networks. Science 286 (1999), pp. 509-512. doi: 10.1126/science.286.5439.509[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1226.05223
[3] Y.L. Cai, J. Jiao, Z. Gui, Y. Liu, and W.M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput. 329 (2018), pp. 210-226. [Web of Science ®], [Google Scholar] · Zbl 1427.34073
[4] X.W. Chu, Z.Z. Zhang, J.H. Guan, and S.G. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks, Phys. A 390 (2011), pp. 471-481. doi: 10.1016/j.physa.2010.09.038[Crossref], [Web of Science ®], [Google Scholar]
[5] Department of Health and Human Services, United States of America, National Institute on Alcohol Abuse and Alcoholism. Availiable at http://www.niaaa.nih.gov/FAQs/General-English/, last accessed March 11, 2009. [Google Scholar]
[6] Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Commun. Pure Appl. Anal. 17 (2018), pp. 1899-1920. doi: 10.3934/cpaa.2018090[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1397.35314
[7] X.C. Duan, S.L. Yuan, and X.Z. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput. 226 (2014), pp. 528-540. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1354.92083
[8] X.C. Duan, S.L. Yuan, Z.P. Qiu, and J.L. Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl. 68 (2014), pp. 288-308. doi: 10.1016/j.camwa.2014.06.002[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1369.92117
[9] S.Y. Huang and J.F. Jiang, Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate, Math. Biosci. 13 (2016), pp. 723-729. doi: 10.3934/mbe.2016016[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1352.92156
[10] S.Y. Huang, F.D. Chen, and L.G. Chen, Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination, Commun. Nonlinear Sci. Numer. Simul. 43 (2017), pp. 296-310. doi: 10.1016/j.cnsns.2016.07.014[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1465.92058
[11] H.F. Huo and Y.L. Chen, Stability of a binge drinking model with deal, J. Biol. Dyn. 11 (2017), pp. 210-226. doi: 10.1080/17513758.2017.1301579[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1447.92430
[12] H.F. Huo and X.M. Zhang, Complex dynamics in an alcoholism model with the impact of twitter, Math. Biosci. 281 (2016), pp. 24-35. doi: 10.1016/j.mbs.2016.08.009[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1348.92080
[13] H.F. Huo and M.X. Zou, Modelling effects of treatment at home on tuberculosis transmission dynamics, Appl. Math. Model. 2016 (2016), pp. 9474-9484. doi: 10.1016/j.apm.2016.06.029[Crossref], [Google Scholar] · Zbl 1464.92145
[14] H.F. Huo, R. Chen, and X.Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model. 40(13-14) (2016), pp. 6550-6559. doi: 10.1016/j.apm.2016.01.054[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1465.92119
[15] H.F. Huo, F.F. Cui, and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Phys. A 496 (2018), pp. 249-262. doi: 10.1016/j.physa.2018.01.003[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1514.92043
[16] H.F. Huo, P. Yang, and H. Xiang, Dynamics for an SIRS epidemic model with infection age and relapse on a scale-free network, J. Franklin Inst. 356 (2019), pp. 7411-7443. doi: 10.1016/j.jfranklin.2019.03.034[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1418.92169
[17] Z. Jin, G.Q. Sun, and H.P. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng. 11 (2014), pp. 1295-1317. doi: 10.3934/mbe.2014.11.1295[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1326.92067
[18] J. Joo, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys. Rev. E 69 (2004), pp. 1-6. doi: 10.1103/PhysRevE.69.066105[Crossref], [Web of Science ®], [Google Scholar]
[19] A. Lajmanovich, J.A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28 (1976), pp. 221-236. doi: 10.1016/0025-5564(76)90125-5[Crossref], [Google Scholar] · Zbl 0344.92016
[20] J.Z. Liu, Y.F. Tang, and Z.R. Yang, The spread of disease with birth and death on networks, J. Stat. Mech. Theory Experiment 2004 (2004), pp. P08008. doi: 10.1088/1742-5468/2004/08/P08008[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1086.92047
[21] X.Y. Meng and Y.Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifur. Chaos 28(3) (2018), p. 1850042 (24 pages). doi: 10.1142/S0218127418500426[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1388.34075
[22] X.Y. Meng, N.N. Qin, and H.F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dyn. 12(1) (2018), pp. 342-374. doi: 10.1080/17513758.2018.1454515[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1448.92235
[23] G. Mulone, Modeling binge drinking, Int. J. Biomath. 5 (2012), pp. 1-14. doi: 10.1142/S1793524511001453[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1297.92079
[24] R. Pastor-Satorras and A. Vespiganai, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001), pp. 3200-3203. doi: 10.1103/PhysRevLett.86.3200[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[25] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(2) (2001), p. 066117. doi: 10.1103/PhysRevE.95.022301[Crossref], [Google Scholar] · Zbl 1132.92338
[26] J. Rehm, The risks associated with alcohol use and alcoholism, Alcohol Res. Health 34 (2011), pp. 135-143. [PubMed], [Google Scholar]
[27] J. Rehm, C. Mathers, S. Popova, M. Thavorncharoensap, Y. Teerawattananon, and J. Patra, Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders, Lancet 373 (2009), pp. 2223-2233. doi: 10.1016/S0140-6736(09)60746-7[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[28] B. Tang, Y. Xiao, S. Sivaloganathan, and J. Wu, A piecewise model of virus-immune system with effector cell-guided therapy, Appl. Math. Model. 47 (2017), pp. 227-248. doi: 10.1016/j.apm.2017.03.023[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1446.92024
[29] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(Special) (2002), pp. 29-48. doi: 10.1016/S0025-5564(02)00108-6[Crossref], [PubMed], [Google Scholar] · Zbl 1015.92036
[30] H. Xiang, Y.P. Liu, and H.F. Huo, Stability of an SAIRS alcoholism model on scale-free networks, Phys. A Stat. Mech. Appl. 473 (2017), pp. 276-292. doi: 10.1016/j.physa.2017.01.012[Crossref], [Google Scholar] · Zbl 1400.92292
[31] H. Xiang, Y.L. Tang, and H.F. Huo, A viral model with intracellular delay and humoral immunity, Bull. Malays. Math. Sci. Soc. 40 (2017), pp. 1011-1023. doi: 10.1007/s40840-016-0326-2[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1377.92103
[32] H. Xiang, Y.Y. Wang, and H.F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput. 8(5) (2018), pp. 1535-1554. [Google Scholar] · Zbl 1457.92183
[33] H. Xiang, M.X. Zou, and H.F. Huo, Modeling the effects of health education and early therapy on tuberculosis transmission dynamics, Int. J. Nonlinear Sci. Numer. Simul. 20 (2019), pp. 243-255. doi: 10.1515/ijnsns-2016-0084[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1461.92123
[34] S.X. Yan, Y. Zhang, J.L. Ma, and S.L. Yuan, An edge-based sir model for sexually transmitted diseases on the contact network, J. Theor. Biol. 439 (2018), pp. 216-225. doi: 10.1016/j.jtbi.2017.12.003[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1397.92696
[35] J.Y. Yang and Y.M. Chen, Effect of infection age on an SIR epidemic model with demography on complex networks, Phys. A. Stat. Mech. Appl. 479 (2017), pp. 527-541. doi: 10.1016/j.physa.2017.03.006[Crossref], [Google Scholar] · Zbl 1495.92108
[36] R. Yang, B.H. Wang, and J. Ren, Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A 364 (2007), pp. 189-193. doi: 10.1016/j.physleta.2006.12.021[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1203.05144
[37] H.F. Zhang and X.C. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity, Nonlinear Anal. 70 (2009), pp. 3273-3278. doi: 10.1016/j.na.2008.04.031[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1158.92038
[38] J.P. Zhang and Z. Jin, The analysis of an epidemic model on networks, Appl. Math. Comput. 217 (2011), pp. 7053-7064. [Web of Science ®], [Google Scholar] · Zbl 1211.92053
[39] X.B. Zhang, Q.H. Shi, S.H. Ma, H.F. Huo, and D.G. Li, Dynamic behavior of a stochastic SIQS epidemic model with Levy jumps, Nonlinear Dyn. 93 (2018), pp. 1481-1493. doi: 10.1007/s11071-018-4272-4[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1398.37096
[40] L. Zhao, L. Zhang, and H.-F. Huo, Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate, Taiwanese J. Math. 23 (2019), pp. 951-980. doi: 10.11650/tjm/181009[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1416.35070
[41] G.H. Zhu, X.C. Fu, and G.R. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 2588-2594. doi: 10.1016/j.cnsns.2011.08.039[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1243.92048
[42] G.H. Zhu, X.C. Fu, and G.R. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks, Appl. Math. Model. 36 (2012), pp. 5808-5817. doi: 10.1016/j.apm.2012.01.023[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1349.92158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.