×

The analysis of an epidemic model on networks. (English) Zbl 1211.92053

Summary: This paper considers an epidemic model with birth and death on networks. We derive the epidemic threshold \(R_{0}\) dependent on the birth rate \(b\), the death rate \(d\) (natural death) and \(\mu \) from the infectious disease and natural death, and the cure rate \(\gamma \). The stability of the equilibriums (the disease-free equilibrium and endemic equilibrium) are analysed. Finally, the effects of various immunization schemes are studied and compared. We show that both targeted, and acquaintance immunization strategies compare favorably to a proportional scheme in terms of effectiveness. For active immunization, the threshold is easier to apply practically. To illustrate our theoretical analysis, some numerical simulations are also included.

MSC:

92D30 Epidemiology
92C42 Systems biology, networks
34D05 Asymptotic properties of solutions to ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Kermack, W. O.; Mckendrick, A. G., Contributions to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115, 700-721 (1927) · JFM 53.0517.01
[2] Barabasi, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[3] Newman, M. E.J., Spread of epidemic disease on networks, Phys. Rev. E, 66, 016128 (2002)
[4] Pastor-Satorras, R.; Vespignani, A., Immunization of complex, Phys. Rev. E, 65, 036104 (2002)
[5] May, R. M.; Lloyd, A. L., Infection dynamics on scale-free networks, Phys. Rev. E, 64, 066112 (2001)
[6] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200-3203 (2001)
[7] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, 066117 (2001)
[8] Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. E, 90, 028701 (2003)
[9] Barthelemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, J. Theor. Biol., 235, 275-288 (2005) · Zbl 1445.92262
[10] Liu, J. Z.; Tang, Y. F.; Yang, Z. R., The spreading of disease with birth and death networks, J. Stat. Mech., 2004, P08008 (2004) · Zbl 1086.92047
[11] Boguna, M.; Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in complex networks with degree correlations, Lect. Notes Phys., 625, 127-147 (2003) · Zbl 1132.92338
[12] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 035108 (2002)
[13] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys. Rev. E, 65, 036104 (2002)
[14] Fu, X. C.; Small, M.; Walker, D. M.; Zhang, H. F., Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77, 036113 (2008)
[15] Newman, M. E.J., Assortative Mixing in Networks, Phys. Rev. Lett., 89, 208701 (2002)
[16] Wang, J. Z.; Liu, Z. R.; Xu, J. H., Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission, Physica A, 382, 715-721 (2007)
[17] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical phenomena in complex networks, Rev. Mode. Phys., 80, 1261-1275 (2008)
[18] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85, 4626-5471 (2000)
[19] Callaway, D. S.; Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett., 85, 5468-5471 (2000)
[20] Zhou, T., Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity, Phys. Rev. E, 74, 056109 (2006)
[21] Joo, J.; Lebowitz, J. L., Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys. Rev. E, 69, 066105 (2004)
[22] Cohen, R.; Havlin, S.; Ben-Avraham, D., Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., 91, 247901 (2003)
[23] Massad, E.; Ma, S.; Chen, M.; Struchiner, C.; Stollenwerk, N.; Aguiar, M., Scale-free network of a dengue epidemic, Appl. Math. Comput., 195, 376-381 (2008) · Zbl 1128.92040
[24] Sugimine, N.; Aihara, K., Stability of an equilibrium state in a multiinfectious-type SIS model on a truncated network, Artif. Life Robotics, 11, 157-161 (2007)
[25] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221-236 (1976) · Zbl 0344.92016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.