×

Calabi-Yau quotients of hyperkähler four-folds. (English) Zbl 1480.14029

Let \(X\) be a Kähler manifold of dimension \(n\). \(X\) is a Calabi-Yau manifold if the canonical bundle of \(X\) is trivial, and Hodge numbers \(h^{i,0}(X)=0\) for \(i=1, \cdots, n-1\). If \(X\) is simply connected and admits a holomorphic symplectic form, then \(X\) is called a hyperkähler manifold. There are examples of automorphisms of hyperkähler manifolds preserving holomorphic volume forms but not holomorphic symplectic forms. The quotients would be Calabi-Yau varieties with orbifold singularities, and certain resolutions would be Calabi-Yau manifolds if they exist.
The authors use this method to construct Calabi-Yau 4-folds via hyperkähler 4-folds with non-symplectic automorphisms. More precisely, the abstract of this paper describes the contents well as the following: ‘The aim of this paper is to construct Calabi-Yau 4-folds as crepant resolutions of the quotients of a hyperkähler 4-fold \(X\) by a non-symplectic involution \(\alpha\). We first compute the Hodge numbers of a Calabi-Yau constructed in this way in a general setting, and then we apply the results to several specific examples of non-symplectic involutions, producing Calabi-Yau 4-folds with different Hodge diamonds. Then we restrict ourselves to the case where \(X\) is the Hilbert scheme of two points on a \(K3\) surface \(S\), and the involution \(\alpha\) is induced by a non-symplectic involution on the \(K3\) surface. In this case we compare the Calabi-Yau 4-fold \(Y_S\), which is the crepant resolution of \(X/\alpha\), with the Calabi-Yau 4-fold \(Z_S\), constructed from \(S\) through the Borcea-Voisin construction. We give several explicit geometrical examples of both these Calabi-Yau 4-folds, describing maps related to interesting linear systems as well as a rational 2:1 map from \(Z_S\) to \(Y_S\).’

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J35 \(4\)-folds
14J50 Automorphisms of surfaces and higher-dimensional varieties
14C05 Parametrization (Chow and Hilbert schemes)

References:

[1] Bǎdescu, L. and Beltrametti, M. C., Seshadri positive submanifolds of polarized manifolds. Cent. Eur. J. Math.11(2013), no. 3, 447-476. https://doi.org/10.2478/s11533-012-0146-z. · Zbl 1276.14022
[2] Barth, W. P., Hulek, K., Peters, C. A. M., and Van De Ven, A., Compact complex surfaces, Second ed., , Springer-Verlag, Berlin, 2004. doi:10.1007/978-3-642-57739-0 · Zbl 1036.14016 · doi:10.1007/978-3-642-57739-0
[3] Batyrev, V. V., Birational Calabi-Yau n-folds have equal Betti numbers. In: New trends in algebraic geometry (Warwick, 1996), , Cambridge University Press, Cambridge, 1999, pp. 1-11. https://doi.org/10.1017/CBO9780511721540.002. · Zbl 0955.14028
[4] Beauville, A., Variétés Kähleriennes dont la premiere classe de Chern est nulle, J. Differential Geom, 18, no. 4, 755-782, (1983) · Zbl 0537.53056 · doi:10.4310/jdg/1214438181
[5] Beauville, A., Antisymplectic involutions of holomorphic symplectic manifolds, J. Topol., 4, no. 2, 300-304, (2011) · Zbl 1242.14041 · doi:10.1112/jtopol/jtr002
[6] Bogomolov, F. A., On the decomposition of Kähler manifolds with trivial canonical class, Mat. Sb. (N. S.), 93(135), no. 4, 573-575, 630, (1974) · Zbl 0299.32023
[7] Boissière, S., Automorphismes naturels de l’espace de Douady de points sur une surface, Canad. J. Math., 64, no. 1, 3-23, (2012) · Zbl 1276.14006 · doi:10.4153/CJM-2011-041-5
[8] Boissière, S., Camere, C., and Sarti, A., Classification of automorphisms on a deformation family of hyper-Kähler four-folds by p-elementary lattices. Kyoto J. Math.56(2016), no. 3, 465-499. https://doi.org/10.1215/21562261-3600139. doi:10.1215/21562261-3600139 · Zbl 1375.14143 · doi:10.1215/21562261-3600139
[9] Boissière, S., Nieper-Wiß Kirchen, M., and Sarti, A., Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties. J. Math. Pures Appl. (9)95(2011), no. 5, 553-563. https://doi.org/10.1016/j.matpur.2010.12.003. doi:10.1016/j.matpur.2010.12.003 · Zbl 1215.14046 · doi:10.1016/j.matpur.2010.12.003
[10] Boissière, S. and Sarti, A., A note on automorphisms and birational transformations of holomorphic symplectic manifolds. Proc. Amer. Math. Soc.140(2012), no. 12, 4053-4062. https://doi.org/10.1090/S0002-9939-2012-11277-8. doi:10.1090/S0002-9939-2012-11277-8 · Zbl 1276.14062 · doi:10.1090/S0002-9939-2012-11277-8
[11] Borcea, C., K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds. , American Mathematical Society, Providence, RI, 1997, pp. 717-743. · Zbl 0939.14021
[12] Camere, C., Lattice polarized irreducible holomorphic symplectic manifolds, Ann. l’Inst. Fourier (Grenoble), 66, no. 2, 687-709, (2016) · Zbl 1354.14056 · doi:10.5802/aif.3022
[13] Cattaneo, A. and Garbagnati, A., Calabi-Yau 3-folds of Borcea-Voisin type and elliptic fibrations. Tohoku Math. J. (2)68(2016), no. 4, 515-558. https://doi.org/10.2748/tmj/1486177214. doi:10.2748/tmj/1486177214 · Zbl 1356.14030 · doi:10.2748/tmj/1486177214
[14] Cynk, S. and Hulek, K., Higher-dimensional modular Calabi-Yau manifolds. Canad. Math. Bull.50(2007), no. 4, 486-503. https://doi.org/10.4153/CMB-2007-049-9. doi:10.4153/CMB-2007-049-9 · Zbl 1141.14009 · doi:10.4153/CMB-2007-049-9
[15] Cynk, S. and Van Straten, D., Infinitesimal deformations of double covers of smooth algebraic varieties. Math. Nachr.279(2006), no. 7, 716-726. https://doi.org/10.1002/mana.200310388. doi:10.1002/mana.200310388 · Zbl 1101.14006 · doi:10.1002/mana.200310388
[16] Debarre, O., Higher-dimensional algebraic geometry, (2001), Springer-Verlag: Springer-Verlag, New York · Zbl 0978.14001 · doi:10.1007/978-1-4757-5406-3
[17] Denef, J. and Loeser, F., Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math.135(1999), no. 1, 201-232. https://doi.org/10.1007/s002220050284. doi:10.1007/s002220050284 · Zbl 0928.14004 · doi:10.1007/s002220050284
[18] Dillies, J., Generalized Borcea-Voisin construction, Lett. Math. Phys., 100, no. 1, 77-96, (2012) · Zbl 1245.14037 · doi:10.1007/s11005-011-0528-3
[19] Dolgachev, I. V., Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., 81, no. 3, 2599-2630, (1996) · Zbl 0890.14024 · doi:10.1007/BF02362332
[20] Esnault, H. and Viehweg, E., Lectures on vanishing theorems. , Birkhäuser Verlag, Basel, 1992. https://doi.org/10.1007/978-3-0348-8600-0. doi:10.1007/978-3-0348-8600-0 · Zbl 0779.14003 · doi:10.1007/978-3-0348-8600-0
[21] Ferretti, A., Special subvarieties of EPW sextics, Math. Z., 272, no. 3-4, 1137-1164, (2012) · Zbl 1268.53058 · doi:10.1007/s00209-012-0980-5
[22] Fujiki, A., On primitively symplectic compact Kähler V-manifolds of dimension four. In: Classification of algebraic and analytic manifolds (Katata, 1982), , Birkhäuser Boston, Boston, MA, 1983, pp. 71-250. · Zbl 0549.32018
[23] Fujiki, A., Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci., 24, no. 1, 1-97, (1988) · Zbl 0654.32015 · doi:10.2977/prims/1195175326
[24] Fulton, W., Intersection theory, (1998), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0885.14002 · doi:10.1007/978-1-4612-1700-8
[25] Gross, M., Huybrechts, D., and Joyce, D., Calabi-Yau manifolds and related geometries: Lectures at a summer school in Nordfjordeid Norway, June 2001. , Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-642-19004-9. doi:10.1007/978-3-642-19004-9 · Zbl 1001.00028 · doi:10.1007/978-3-642-19004-9
[26] Guan, D., On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett., 8, no. 5-6, 663-669, (2001) · Zbl 1011.53039 · doi:10.4310/MRL.2001.v8.n5.a8
[27] Hassett, B. and Tschinkel, Y., Hodge Theory and Lagrangian planes on generalized Kummer fourfolds. Moscow Math. J.13(2013), no. 1, 33-56, 189. doi:10.17323/1609-4514-2013-13-1-33-56 · Zbl 1296.14008 · doi:10.17323/1609-4514-2013-13-1-33-56
[28] Huybrechts, D., Moduli spaces of hyperkähler manifolds and mirror symmetry. In: Intersection theory and moduli, , Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 185-247. · Zbl 1110.53034
[29] Iliev, A., Kapustka, G., Kapustka, M., and Ranestad, K., Hyper-kähler fourfolds and Kummer surfaces. Proc. Lond. Math. Soc.115(2017), no. 6, 1276-1316. https://doi.org/10.1112/plms.12063. doi:10.1112/plms.12063 · Zbl 1408.14033 · doi:10.1112/plms.12063
[30] Ito, T., Birational smooth minimal models have equal Hodge numbers in all dimensions. In: Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), , American Mathematical Society, Providence, RI, 2003, pp. 183-194. · Zbl 1051.14012
[31] Joyce, D. D., Compact manifolds with special holonomy, (2000), Oxford University Press: Oxford University Press, Oxford · Zbl 1027.53052
[32] Kawamata, Y., Flops connect minimal models, Publ. Res. Inst. Math. Sci., 44, no. 2, 419-423, (2008) · Zbl 1145.14014 · doi:10.2977/prims/1210167332
[33] Kawatani, K., On the birational geometry for irreducible symplectic 4-folds related to the Fano schemes of lines. 2009. arxiv:0906.0654.
[34] Kempf, G. R., Algebraic varieties, (1993), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0780.14001 · doi:10.1017/CBO9781107359956
[35] Kollár, J. and Mori, S., Birational geometry of algebraic varieties, , Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511662560. doi:10.1017/CBO9780511662560 · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[36] Krug, A., Ploog, D., and Sosna, P., Derived categories of resolutions of cyclic quotient singularities. Q. J. Math.69(2018), 509-548. https://doi.org/10.1093/qmath/hax048. doi:10.1093/qmath/hax048 · Zbl 1423.14127 · doi:10.1093/qmath/hax048
[37] Logachev, D., Fano threefolds of genus 6, Asian J. Math., 16, no. 3, 515-559, (2012) · Zbl 1263.14040 · doi:10.4310/AJM.2012.v16.n3.a9
[38] Menet, G., On the integral cohomology of quotients of manifolds by cyclic groups, J. Math. Pures Appl. (9), (2017)
[39] Miranda, R., The basic theory of elliptic surfaces, (1989), ETS Editrice: ETS Editrice, Pisa · Zbl 0744.14026
[40] Mongardi, G., Tari, K., and Wandel, M., Automorphisms of generalised Kummer fourfolds. Manuscripta Math.(2017) . https://doi.org/10.1007/s00229-017-0942-7. · Zbl 1484.14081
[41] Mongardi, G. and Wandel, M., Induced automorphisms on irreducible symplectic manifolds. J. Lond. Math. Soc. (2)92(2015), no. 1, 123-143. https://doi.org/10.1112/jlms/jdv012. doi:10.1112/jlms/jdv012 · Zbl 1400.14109 · doi:10.1112/jlms/jdv012
[42] Nikulin, V. V., Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 39, no. 2, 278-293, 471, (1975) · Zbl 0312.14008
[43] Nikulin, V. V., Finite groups of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch., 38, 75-137, (1979) · Zbl 0433.14024
[44] Nikulin, V. V., Involutions of integral quadratic forms and their applications to real algebraic geometry, Izvestiya: Mathematics, 22, no. 1, 99-172, (1984) · Zbl 0547.10021 · doi:10.1070/IM1984v022n01ABEH001435
[45] O’Grady, K. G., Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J., 134, no. 1, 99-137, (2006) · Zbl 1105.14051 · doi:10.1215/S0012-7094-06-13413-0
[46] Oguiso, K., No cohomologically trivial non-trivial automorphism of generalized Kummer manifolds. 2012. arxiv:1208.3750.
[47] Oguiso, K., On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan, 41, no. 4, 651-680, (1989) · Zbl 0703.14024 · doi:10.2969/jmsj/04140651
[48] Oguiso, K., On automorphisms of the punctual Hilbert schemes of K3 surfaces, Eur. J. Math., 2, no. 1, 246-261, (2016) · Zbl 1343.14041 · doi:10.1007/s40879-015-0070-4
[49] Oguiso, K. and Schröer, S., Enriques manifolds. J. Reine Angew. Math.661(2011), 215-235. https://doi.org/10.1515/CRELLE.2011.077. doi:10.1515/CRELLE.2011.077 · Zbl 1272.14026 · doi:10.1515/CRELLE.2011.077
[50] Ohashi, H. and Wandel, M., Non-natural non-symplectic involutions on symplectic manifolds of\(K3^{[2]} - type . 2013\). arxiv:1305.6353.
[51] Saint-Donat, B., Projective models of K - 3 surfaces, Amer. J. Math., 96, 602-639, (1974) · Zbl 0301.14011 · doi:10.2307/2373709
[52] Sawon, J., Abelian fibred holomorphic symplectic manifolds, Turkish J. Math., 27, no. 1, 197-230, (2003) · Zbl 1065.53067
[53] Van Geemen, B., Some remarks on Brauer groups of K3 surfaces, Adv. Math., 197, no. 1, 222-247, (2005) · Zbl 1082.14040 · doi:10.1016/j.aim.2004.10.004
[54] Voisin, C., Miroirs et involutions sur les surfaces K3, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). Astérisque, 218, 273-323, (1993) · Zbl 0818.14014
[55] Voisin, C., Hodge theory and complex algebraic geometry. I, (2002), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1005.14002 · doi:10.1017/CBO9780511615344
[56] Wang, C.-L., Cohomology theory in birational geometry, J. Differential Geom., 60, no. 2, 345-354, (2002) · Zbl 1052.14016 · doi:10.4310/jdg/1090351105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.