×

On automorphisms of the punctual Hilbert schemes of \(K3\) surfaces. (English) Zbl 1343.14041

Let \(S\) be a \(K3\) surface of Picard number \(2\), and denote by \(\mathrm{Hilb}^2(S)\) the Hilbert scheme of \(0\)-dimensional closed subschemes of length two on \(S\). In his previous paper [J. Alg. Geom. 23, No. 4, 775–795 (2014; Zbl 1304.14051)], the author proved that the group of automorphisms of \(S\) is of finite order. In the paper under review the author gives a sufficient condition in geometric terms for \(\mathrm{Hilb}^2(S)\) to have automorphism group of infinite order. He also finds a concrete example of \(K3\) surfaces \(S\) with \(|\mathrm{Aut}(\mathrm{Hilb}^2(S))|=\infty\). In his example, the Néron-Severi group of \(S\) is isomorphic to a certain even hyperbolic lattice of rank \(2\) and of discriminant \(17\).
As an interesting application for Mori dream space, the author shows that for a \(K3\) surface \(S\) in his example, the Hilbert-Chow morphism \(\mathrm{Hilb}^2(S)\to \mathrm{Sym}^2(S)\) is an extremal crepant resolution such that the source \(\mathrm{Hilb}^2(S)\) is not a Mori dream space but the target \(\mathrm{Sym}^2(S)\) is a Mori dream space.

MSC:

14J50 Automorphisms of surfaces and higher-dimensional varieties
14C05 Parametrization (Chow and Hilbert schemes)
14J35 \(4\)-folds
14J28 \(K3\) surfaces and Enriques surfaces

Citations:

Zbl 1304.14051

References:

[1] Artebani, M., Hausen, J., Laface, A.: On Cox rings of K3 surfaces. Compos. Math. 146(4), 964-998 (2010) · Zbl 1197.14040 · doi:10.1112/S0010437X09004576
[2] Bäker, H.: Good quotients of Mori dream spaces. Proc. Amer. Math. Soc. 139(9), 3135-3139 (2011) · Zbl 1230.14066 · doi:10.1090/S0002-9939-2011-10742-1
[3] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics, vol. 4. Springer, Berlin (2004) · Zbl 1036.14016
[4] Beauville, A.: Some Remarks on Kähler Manifolds with \[c_1=0\] c1=0. In: Ueno, K. (ed.) Classification of Algebraic and Analytic Manifolds (Katata, 1982). Progress in Mathematics, vol. 39, pp. 1-26. Birkhäuser, Boston (1983) · Zbl 1304.14051
[5] Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18(4), 755-782 (1984) · Zbl 0537.53056
[6] Debarre, O.: Un contre-exemple au théorème de Torelli pour les variétés symplectiques irréductibles. C. R. Acad. Sci. Paris Sér. I Math. 299(14), 681-684 (1984) · Zbl 0573.32028
[7] Dolgachev, I.V.: Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81(3), 2599-2630 (1996) · Zbl 0890.14024 · doi:10.1007/BF02362332
[8] Fujiki, A.: On primitively symplectic compact Kähler \[VV\]-manifolds of dimension four. In: Ueno, K. (ed.) Classification of Algebraic and Analytic Manifolds (Katata, 1982). Progress in Mathematics, vol. 39, pp. 71-250. Birkhäuser, Boston (1983) · Zbl 1076.14046
[9] Fujita, T.: Fractionally logarithmic canonical rings of algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(3), 685-696 (1984) · Zbl 0543.14004
[10] Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331-348 (2000) · Zbl 1077.14554 · doi:10.1307/mmj/1030132722
[11] Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math. 119(3), 603-633 (1984) · Zbl 0544.14009 · doi:10.2307/2007087
[12] Kawamata, Y.: Crepant blowing-up of \[33\]-dimensional canonical singularities and its application to degenerations of surfaces. Ann. Math. 127(1), 93-163 (1988) · Zbl 0651.14005 · doi:10.2307/1971417
[13] Kawamata, Y.: On the cone of divisors of Calabi-Yau fiber spaces. Internat. J. Math. 8(5), 665-687 (1997) · Zbl 0931.14022 · doi:10.1142/S0129167X97000354
[14] Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419-423 (2008) · Zbl 1145.14014 · doi:10.2977/prims/1210167332
[15] Madonna, C., Nikulin, V.V.: On a classical correspondence between K3 surfaces. Proc. Steklov Inst. Math. 241, 120-153 (2003) · Zbl 1076.14046
[16] Markman, E., Yoshioka, K.: A proof of the Kawamata-Morrison Cone Conjecture for holomorphic symplectic varieties of \[K3^{[n]}\] K3[n] or generalized Kummer deformation type (2014). arXiv:1402.2049 · Zbl 1353.14049
[17] Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75(1), 105-121 (1984) · Zbl 0509.14034 · doi:10.1007/BF01403093
[18] O’Grady, K.G.: Involutions and linear systems on holomorphic symplectic manifolds. Geom. Funct. Anal. 15(6), 1223-1274 (2005) · Zbl 1093.53081 · doi:10.1007/s00039-005-0538-3
[19] Oguiso, K.: Automorphism groups of Calabi-Yau manifolds of Picard number \[22\]. J. Algebraic Geom. 23(4), 775-795 (2014) · Zbl 1304.14051 · doi:10.1090/S1056-3911-2014-00642-1
[20] Okawa, S.: On images of Mori dream spaces. Math. Ann. (2015). doi:10.1007/s00208-015-1245-5 · Zbl 1341.14007
[21] Saint-Donat, B.: Projective models of \[K-3K-3\] surfaces. Amer. J. Math. 96(4), 602-639 (1974) · Zbl 0301.14011 · doi:10.2307/2373709
[22] Sterk, H.: Finiteness results for algebraic K3 surfaces. Math. Z. 189(4), 507-513 (1985) · Zbl 0545.14032 · doi:10.1007/BF01168156
[23] Totaro, B.: The cone conjecture for Calabi-Yau pairs in dimension \[22\]. Duke Math. J. 154(2), 241-263 (2010) · Zbl 1203.14046 · doi:10.1215/00127094-2010-039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.