×

Reset integral control for improved settling of PID-based motion systems with friction. (English) Zbl 1429.93163

Summary: We present a reset control approach to improve the transient performance of a PID-controlled motion system subject to Coulomb and viscous friction. A reset integrator is applied to circumvent the depletion and refilling process of a linear integrator when the solution overshoots the setpoint, thereby significantly reducing the settling time. Robustness for unknown static friction levels is obtained. The closed-loop system is formulated through a hybrid systems framework, within which stability is proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. The working principle of the proposed reset controller is analyzed in an experimental benchmark study of an industrial high-precision positioning machine.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B35 Sensitivity (robustness)
70F40 Problems involving a system of particles with friction

References:

[1] Aangenent, W. H.T. M.; Witvoet, G.; Heemels, W. P.M. H.; van de Molengraft, M. J.G.; Steinbuch, M., Performance analysis of reset control systems, International Journal of Robust and Nonlinear Control, 20, 11, 1213-1233 (2010) · Zbl 1200.93025
[2] Armstrong-Hélouvry, B., Control of machines with friction (1992), Spinger Science: Spinger Science New York · Zbl 0782.93003
[3] Armstrong-Hélouvry, B.; Dupont, P.; Canudas de Wit, C., A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30, 7, 1083-1138 (1994) · Zbl 0800.93424
[4] Bartolini, G.; Pisano, A.; Punta, E.; Usai, E., A survey of applications of second-order sliding mode control to mechanical systems, International Journal of Control, 76, 875-892 (2003) · Zbl 1070.93011
[5] Beerens, R.; Bisoffi, A.; Zaccarian, L.; Heemels, W. P.M. H.; Nijmeijer, H.; van de Wouw, N., Hybrid PID control for transient performance improvement of motion systems with friction, (Amer. control conference (2018)), 539-544
[6] Beerens, R.; Nijmeijer, H.; Heemels, W. P.M. H.; van de Wouw, N., Set-point control of motion systems with uncertain set-valued Stribeck friction, IFAC PapersOnline, 50, 1, 2965-2970 (2017)
[7] Bisoffi, A.; Da Lio, M.; Teel, A. R.; Zaccarian, L., Global asymptotic stability of a PID control system with Coulomb friction, IEEE Transactions on Automation Control (2018) · Zbl 1423.34071
[8] Clarke, F. H., Optimization and nonsmooth analysis (1990), SIAM: SIAM Philadelphia · Zbl 0696.49002
[9] Clegg, J. C., A nonlinear integrator for servomechanisms, Transactions on American Institute of Electrical Engineers, Part II: Applications and Industry, 77, 1, 41-42 (1958)
[10] Deenen, D. A.; Heertjes, M. F.; Heemels, W. P.M. H.; Nijmeijer, H., Hybrid integrator design for enhanced tracking in motion control, (Amer. control conference (2017)), 2863-2868
[11] El Rifai, K.; El Rifai, O., Design of hybrid resetting PID and lag controllers with application to motion control, (Int. conf. adv. intell. mechatron. (2009)), 685-692
[12] Freidovich, L.; Robertsson, A.; Shiriaev, A.; Johansson, R., LuGre-model-based Friction compensation, IEEE Transactions on Control Systems and Technology, 18, 1, 194-200 (2010)
[13] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems (2012), Princeton University Press: Princeton University Press Princeton · Zbl 1241.93002
[14] Hagood, J. W.; Thomson, B. S., Recovering a function from a Dini derivative, American Mathematical Monthly, 113, 1, 34-46 (2006) · Zbl 1132.26321
[15] Hensen, R. H.A.; van de Molengraft, M. J.G.; Steinbuch, M., Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model, Automatica, 39, 12, 2131-2137 (2003) · Zbl 1254.74085
[16] Horowitz, I.; Rosenbaum, P., Non-linear design for cost of feedback reduction in systems with large parameter uncertainty, International Journal of Control, 21, 6, 977-1001 (1975) · Zbl 0312.93019
[17] Iannelli, L.; Johansson, K. H.; Jönsson, U. T.; Vasca, F., Averaging of nonsmooth systems using dither, Automatica, 42, 4, 669-676 (2006) · Zbl 1110.93044
[18] van Loon, S. J.L. M.; Gruntjens, K. G.J.; Heertjes, M. F.; van de Wouw, N.; Heemels, W. P.M. H., Frequency-domain tools for stability analysis of reset control systems, Automatica, 82, 101-108 (2017) · Zbl 1376.93094
[19] van Loon, S. J.L. M.; Hunnekens, B. G.B.; Heemels, W. P.M. H.; van de Wouw, N.; Nijmeijer, H., Split-path nonlinear integral control for transient performance improvement, Automatica, 66, 262-270 (2016) · Zbl 1335.93050
[20] Makkar, C.; Hu, G.; Sawyer, W. G.; Dixon, W. E., Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction, IEEE Transactions on Automation Control, 52, 10, 1988-1994 (2007) · Zbl 1366.93443
[21] Nešić, D.; Teel, A. R.; Zaccarian, L., Stability and performance of SISO control systems with first-order reset elements, IEEE T. Automat. Contr., 56, 11, 2567-2582 (2011) · Zbl 1368.93203
[22] Nešić, D.; Zaccarian, L.; Teel, A. R., Stability properties of reset systems, Automatica, 44, 2019-2026 (2008) · Zbl 1283.93213
[23] Orlov, Y.; Santiesteban, R.; Aguilar, L. T., Impulsive control of a mechanical oscillator with friction, (Amer. control conference (2009)), 3494-3499
[24] Putra, D.; Nijmeijer, H.; van de Wouw, N., Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems, Automatica, 43, 8, 1387-1394 (2007) · Zbl 1130.74033
[25] Rockafellar, R. T.; Wets, R. J.-B., Variational analysis (2009), Springer Science & Business Media: Springer Science & Business Media Berlin Heidelberg
[26] Thermo Fisher Scientific. https://www.fei.com/products/; Thermo Fisher Scientific. https://www.fei.com/products/
[27] Thomsen, J. J., Using fast vibrations to quench friction-induced oscillations, Journal of Sound and Vibration, 228, 5, 1079-1102 (1999)
[28] van de Wouw, N.; Leine, R. I., Robust impulsive control of motion systems with uncertain friction, International Journal of Robust and Nonlinear Control, 22, 369-397 (2012) · Zbl 1261.93069
[29] Zhao, G.; Wang, J., On \(L_2\) gain performance improvement of linear systems with Lyapunov-based reset control, Nonlinear Analysis. Hybrid Systems, 21, 105-117 (2016) · Zbl 1338.93164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.