×

Double variational principle for mean dimension. (English) Zbl 1433.37025

The authors study a variational principle in the setting of mean dimension theory and rate distortion theory [the authors, Isr. J. Math. 199, Part B, 573–584 (2014; Zbl 1301.37011); the first author and B. Weiss, ibid. 115, 1–24 (2000; Zbl 0978.54026)].

MSC:

37C45 Dimension theory of smooth dynamical systems
37A05 Dynamical aspects of measure-preserving transformations
94A34 Rate-distortion theory in information and communication theory

References:

[1] T. Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression. Englewood Cliffs, Prentice-Hall, NJ (1971). · Zbl 0200.00001
[2] T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd edition. Wiley, New York (2006). · Zbl 1140.94001
[3] E.I. Dinaburg. A correlation between topological entropy and metric entropy. Dokl. Akad. Nauk SSSR, 190 (1970), 19-22.
[4] M. Effros, P.A. Chou and G.M. Gray. Variable-rate source coding theorems for stationary nonergodic sources. IEEE Trans. Inf. Theory, 40 (1994), 1920-1925. · Zbl 0826.94012 · doi:10.1109/18.340466
[5] M. Einsiedler and T. Ward. Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics. 259, Springer, London. · Zbl 1206.37001
[6] T.N.T. Goodman. Relating topological entropy and measure entropy. Bull. London Math. Soc., 3 (1971), 176-180. · Zbl 0219.54037 · doi:10.1112/blms/3.2.176
[7] L.W. Goodwyn. Topological entropy bounds measure-theoretic entropy. Proc. Amer. Math. Soc., 23 (1969), 679-688. · Zbl 0186.09804 · doi:10.1090/S0002-9939-1969-0247030-3
[8] R.M. Gray. Entropy and Information Theory. Springer-Verlag, New York (1990). · Zbl 0722.94001 · doi:10.1007/978-1-4757-3982-4
[9] M. Gromov. Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom., 2 (1999), 323-415. · Zbl 1160.37322 · doi:10.1023/A:1009841100168
[10] Y. Gutman. Mean dimension and Jaworski-type theorems. Proceedings of the London Mathematical Society, (4)111 (2015), 831-850. · Zbl 1352.37017 · doi:10.1112/plms/pdv043
[11] Y. Gutman, E. Lindenstrauss and M. Tsukamoto. Mean dimension of \[\mathbb{Z}^k\] Zk-actions. Geom. Funct. Anal., (3)26 (2016), 778-817. · Zbl 1378.37056 · doi:10.1007/s00039-016-0372-9
[12] Y. Gutman, Y. Qiao and M. Tsukamoto. Application of signal analysis to the embedding problem of \[\mathbb{Z}^k\] Zk-actions arXiv:1709.00125, to appear in Geom. Funct. Anal. · Zbl 1427.37013
[13] Y. Gutman and M. Tsukamoto. Embedding minimal dynamical systems into Hilbert cubes, preprint. arXiv:1511.01802. · Zbl 1444.37010
[14] J.D. Howroyd. On dimension and on the existence of sets of finite, positive Hausdorff measures. Proc. London Math. Soc., 70 (1995), 581-604. · Zbl 0828.28002 · doi:10.1112/plms/s3-70.3.581
[15] R.I. Jewett. The prevalence of uniquely ergodic systems. J. Math. Mech., 19 (1970), 717-729. · Zbl 0192.40601
[16] T. Kawabata and A. Dembo. The rate distortion dimension of sets and measures. IEEE Trans. Inf. Theory., (5)40 (1994), 1564-1572. · Zbl 0819.94018 · doi:10.1109/18.333868
[17] A.N. Kolmogorov and V.M. Tihomirov. \[ \varepsilon\] ε-entropy and \[\varepsilon\] ε-capacity of sets in functional spaces. Amer. Math. Soc. Transl., (2)33 (1963), 277-367.
[18] W. Krieger. On unique ergodicity. In: Proc. sixth Berkeley symposium, Math. Statist. Probab. Univ. of California Press (1970), pp. 327-346. · Zbl 0262.28013
[19] A. Leon-Garcia, L.D. Davisson and D.L. Neuhoff. New results on coding of stationary nonergodic sources. IEEE Trans. Inform. Theory., 25 (1979), 137-144. · Zbl 0406.94007 · doi:10.1109/TIT.1979.1056009
[20] H. Li and B. Liang. Mean dimension, mean rank and von Neumann-Lück rank. J. Reine Angew. Math., 739 (2018), 207-240. · Zbl 1392.37018 · doi:10.1515/crelle-2015-0046
[21] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227-262. · Zbl 0978.54027 · doi:10.1007/BF02698858
[22] E. Lindenstrauss and M. Tsukamoto. Mean dimension and an embedding problem: an example. Israel J. Math., 199 (2014), 573-584. · Zbl 1301.37011 · doi:10.1007/s11856-013-0040-9
[23] E. Lindenstrauss and M. Tsukamoto. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory, (5)64 (2018), 3590-3609. · Zbl 1395.94215 · doi:10.1109/TIT.2018.2806219
[24] E. Lindenstrauss, and B. Weiss. Mean topological dimension. Israel J. Math., 115 (2000), 1-24. · Zbl 0978.54026 · doi:10.1007/BF02810577
[25] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge (1995). · Zbl 0819.28004
[26] T. Meyerovitch and M. Tsukamoto. Expansive multiparameter actions and mean dimension. Trans. Amer. Math. Soc., 371 (2019), 7275-7299. · Zbl 1419.37023 · doi:10.1090/tran/7588
[27] M. Misiurewicz. A short proof of the variational principle for \[\mathbb{Z}^N_+\] Z+N actions on a compact space. In: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), Astérisque, vol. 40, pp. 145-157, Soc. Math. France, Paris (1976). · Zbl 0368.54013
[28] L. Pontrjagin and L. Schnirelmann. Sur une propriété métrique de la dimension. Ann. Math., 33 (1932), 152-162. · Zbl 0003.33101
[29] A. Rényi. On the dimension and entropy of probability distributions. Acta Math. Sci. Hung., 10 (1959), 193-215. · Zbl 0088.10702 · doi:10.1007/BF02063299
[30] F.E. Rezagah, S. Jalali, E. Erkip and H.V. Poor. Rate-distortion dimension of stochastic processes. arXiv:1607.06792.
[31] K. Schmidt. Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel (1995). · Zbl 0833.28001
[32] C.E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27 (1948), 379-423, 623-656. · Zbl 1154.94303
[33] C.E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv. Rec. Pt. 4, pp. 142-163 (1959).
[34] M. Tsukamoto. Deformation of Brody curves and mean dimension. Ergod. theory Dyn. Syst. 29 (2009), 1641-1657. · Zbl 1186.32002 · doi:10.1017/S014338570800076X
[35] M. Tsukamoto. Mean dimension of the dynamical system of Brody curves. Invent. Math., 211 (2018), 935-968. · Zbl 1405.32017 · doi:10.1007/s00222-017-0758-9
[36] M. Tsukamoto. Large dynamics of Yang-Mills theory: mean dimension formula. J. Anal. Math., 134 (2018), 455-499. · Zbl 1464.53028 · doi:10.1007/s11854-018-0014-2
[37] A. Velozo and R. Velozo. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762. · Zbl 1414.37021
[38] C. Villani. Optimal Transport Old and New. Springer-Verlag, Berlin (2009). · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[39] Y. Wu and S. Verdú. Rényi information dimension: fundamental limits of almost lossless analogue compression. IEEE Trans. Inf. Theory, (8)56, (2010) 3721-3747. · Zbl 1366.94338 · doi:10.1109/TIT.2010.2050803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.