×

Large dynamics of Yang-Mills theory: mean dimension formula. (English) Zbl 1464.53028

Summary: We study the Yang-Mills anti-self-dual (ASD) equation over the cylinder as a non-linear evolution equation. We consider a dynamical system consisting of bounded orbits of this evolution equation. This system contains many chaotic orbits, and moreover becomes an infinite dimensional and infinite entropy system. We study the mean dimension of this huge dynamical system. Mean dimension is a topological invariant of dynamical systems introduced by Gromov. We prove the exact formula of the mean dimension by developing a new technique based on the metric mean dimension theory of Lindenstrauss-Weiss.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals

References:

[1] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. A., 362, 425-461, (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] Da Costa, B. F. P., Deux exemples sur la dimension moyenne d’un espace de courbes de brody, Ann. Inst. Fourier, 63, 23-2237, (2013) · Zbl 1295.30083
[3] Donaldson, S. K., The approximation of instantons, Geom. Funct. Anal., 3, 179-200, (1993) · Zbl 0778.57010 · doi:10.1007/BF01896022
[4] S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, with the assistance of M. Furuta and D. Kotschick, Cambridge University Press, Cambridge, 2002. · Zbl 0998.53057 · doi:10.1017/CBO9780511543098
[5] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, New York, 1990. · Zbl 0820.57002
[6] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011. · Zbl 1206.37001
[7] G. A. Elliott and Z. Niu, The C*-algebra of a minimal homeomorphism of zero mean dimension, arXiv:1406.2382. · Zbl 1410.46046
[8] Floer, A., An instanton-invariant for 3-manifolds, Comm. Math. Phys., 118, 215-240, (1988) · Zbl 0684.53027 · doi:10.1007/BF01218578
[9] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, second edition, Springer-Verlag, New York, 1991. · Zbl 0559.57001 · doi:10.1007/978-1-4613-9703-8
[10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[11] Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom., 2, 323-415, (1999) · Zbl 1160.37322 · doi:10.1023/A:1009841100168
[12] Gutman, Y., Mean dimension and jaworski-type theorems, Proc. London Math. Soc., 111, 831-850, (2015) · Zbl 1352.37017 · doi:10.1112/plms/pdv043
[13] Gutman, Y., Dynamical embedding in cubical shifts and the topological rokhlin and small boundary properties, Ergodic Theory Dynam. Systems, 37, 512-538, (2017) · Zbl 1435.37034 · doi:10.1017/etds.2015.40
[14] Gutman, Y.; Tsukamoto, M., Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts, Ergodic Theory Dynam. Systems, 34, 1888-1896, (2014) · Zbl 1316.37012 · doi:10.1017/etds.2013.30
[15] A. Jaworski, Ph.D. Thesis, University of Maryland, 1974.
[16] Li, H.; Liang, B., Mean dimension, mean rank, and von Neumann-Lück rank, (2015) · Zbl 1392.37018
[17] Lindenstrauss, E., Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89, 227-262, (1999) · Zbl 0978.54027 · doi:10.1007/BF02698858
[18] Lindenstrauss, E.; Tsukamoto, M., Mean dimension and embedding problem: an example, Israel J. Math., 199, 573-584, (2014) · Zbl 1301.37011 · doi:10.1007/s11856-013-0040-9
[19] Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel J. Math., 115, 1-24, (2000) · Zbl 0978.54026 · doi:10.1007/BF02810577
[20] Matsuo, S.; Tsukamoto, M., Instanton approximation, periodic ASD connections, and mean dimension, J. Funct. Anal., 260, 1369-1427, (2011) · Zbl 1217.58007 · doi:10.1016/j.jfa.2010.11.008
[21] Matsuo, S.; Tsukamoto, M., Brody curves and mean dimension, J. Amer. Math. Soc., 28, 159-182, (2015) · Zbl 1307.32013 · doi:10.1090/S0894-0347-2014-00798-0
[22] Matsuo, S.; Tsukamoto, M., Local mean dimension of ASD moduli spaces over the cylinder, Israel J. Math, 207, 793-834, (2015) · Zbl 1328.53033 · doi:10.1007/s11856-015-1162-z
[23] Taubes, C. H., Self-dual Yang-Mills connections on non-self-dual 4-manifolds, J. Differential Geom., 17, 139-170, (1982) · Zbl 0484.53026 · doi:10.4310/jdg/1214436701
[24] Taubes, C. H., Path-connected Yang-Mills moduli spaces, J. Differential Geom., 19, 337-392, (1984) · Zbl 0551.53040 · doi:10.4310/jdg/1214438683
[25] Tsukamoto, M., Gluing an infinite number of instantons, Nagoya Math. J., 188, 107-131, (2007) · Zbl 1147.53023 · doi:10.1017/S0027763000009466
[26] Tsukamoto, M., Moduli space of brody curves, energy and mean dimension, Nagoya Math. J., 192, 27-58, (2008) · Zbl 1168.32016 · doi:10.1017/S0027763000025964
[27] Tsukamoto, M., Gauge theory on infinite connected sum and mean dimension, Math. Phys. Anal. Geom., 12, 325-380, (2009) · Zbl 1193.58006 · doi:10.1007/s11040-009-9065-z
[28] Tsukamoto, M., Remark on energy density of brody curves, Proc. Japan Acad. Ser. A, 88, 127-131, (2012) · Zbl 1257.32017 · doi:10.3792/pjaa.88.127
[29] Tsukamoto, M., Sharp lower bound on the curvatures of ASD connections over the cylinder, J. Math. Soc. Japan, 66, 951-956, (2014) · Zbl 1304.53018 · doi:10.2969/jmsj/06630951
[30] Uhlenbeck, K. K., Connections with lp bounds on curvature, Commun. Math. Phys., 83, 31-42, (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
[31] K. Wehrheim, Uhlenbeck Compactness, European Mathematical Society, Zürich, 2004. · Zbl 1055.53027 · doi:10.4171/004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.