×

Spectrum and stability of a \(1-d\) heat-wave coupled system with dynamical boundary control. (English) Zbl 1435.35196

Summary: In this paper, the negative proportional dynamic feedback is designed in the right boundary of the wave component of the \(1-d\) heat-wave system coupled at the interface and the long-time behavior of the system is discussed. The system is formulated into an abstract Cauchy problem on the energy space. The energy of the system does not increase because the semigroup generated by the system operator is contracted. In the meanwhile, the asymptotic stability of the system is derived in light of the spectral configuration of the system operator. Furthermore, the spectral expansions of the system operator are precisely investigated and the asymptotical stability is not exponential and is shown in view of the spectral expansions.

MSC:

35K51 Initial-boundary value problems for second-order parabolic systems
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B35 Stability in context of PDEs
93C20 Control/observation systems governed by partial differential equations
93D20 Asymptotic stability in control theory
93B07 Observability
Full Text: DOI

References:

[1] Zhang, X.; Zuazua, E., Polynomial decay and control of a 1-D hyperbolic-parabolic coupled system, Journal of Differential Equations, 204, 2, 380-438 (2004) · Zbl 1064.93008 · doi:10.1016/j.jde.2004.02.004
[2] Wehbe, A., Rational energy decay rate for a wave equation with dynamical control, Applied Mathematics Letters, 16, 3, 357-364 (2003) · Zbl 1068.93055 · doi:10.1016/S0893-9659(03)80057-5
[3] Wehbe, A., Observability and controllability for a vibrating string with dynamical boundary control, Electronic Journal of Differential Equations, 2010, 1-13 (2010) · Zbl 1198.35141
[4] Boulakia, M., Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, Comptes Rendus de l’Académie des Sciences - Series I, 336, 12, 985-990 (2003) · Zbl 1129.74306
[5] Zhang, X.; Zuazua, E., Control, observation and polynomial decay for a coupled heat-wave system, Comptes Rendus de l’Académie des Sciences - Series I, 336, 823-828 (2003) · Zbl 1029.93037
[6] Farhat, C.; Lesoinne, M.; LeTallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Computer Methods Applied Mechanics and Engineering, 157, 1-2, 95-114 (1998) · Zbl 0951.74015 · doi:10.1016/S0045-7825(97)00216-8
[7] van Loon, R.; Anderson, P. D.; de Hart, J.; Baaijens, F. P., A combined flctitious domain/adaptive meshing method for fluid-structure interaction in heart valves, International Journal for Numerical Methods in Fluids, 46, 533-544 (2004) · Zbl 1060.76582
[8] Morand, H. J.; Ohayon, R., Fluid Structure Interaction: Applied Numerical Methods, 23 (1995), NY, USA: Wiley, NY, USA · Zbl 0834.73002
[9] Zhang, X.; Zuazua, E., Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Archive for Rational Mechanics and Analysis, 184, 1, 49-120 (2007) · Zbl 1178.74075 · doi:10.1007/s00205-006-0020-x
[10] Grobbelaar-Van Dalsen, M., Strong stability for a fluid-structure interaction model, Mathematical Methods in the Applied Sciences, 32, 11, 1452-1466 (2009) · Zbl 1165.74016 · doi:10.1002/mma.1104
[11] Avalos, G.; Triggiani, R., Rational decay rates for a pde heat-structure interaction: A frequency domain approach, Evolution Equations and Control Theory, 2, 2, 233-253 (2013) · Zbl 1275.35035 · doi:10.3934/eect.2013.2.233
[12] Han, Z.-J.; Zuazua, E., Decay rates for 1-d heat-wave planar networks, networks and heterogeneous media, Networks and Heterogeneous Media, 11, 4, 655-692 (2016) · Zbl 1355.35023 · doi:10.3934/nhm.2016013
[13] Peralta, G.; Kunisch, K., Interface stabilization of a parabolic-hyperbolic PDE system with delay in the interaction, Discrete and Continuous Dynamical Systems- Series A, 38, 6, 3055-3083 (2018) · Zbl 1397.35032 · doi:10.3934/dcds.2018133
[14] Han, Z.-J.; Xu, G.-Q., Spectrum and stability analysis for a transmission problem in thermoelasticity with a concentrated mass, Zeitschrift für Angewandte Mathematik und Physik, 66, 1717-1736 (2015) · Zbl 1328.35133
[15] Wang, J.; Han, Z.-J.; Xu, G.-Q., Energy decay rate of transmission problem between therm oelasticity of type I and type II Z, Zeitschrift für Angewandte Mathematik Und Physik, 68, 65-83 (2017) · Zbl 1391.35064
[16] Morgül, O., Dynamic boundary control of a Euler-Bernoulli beam, IEEE Transactions on Automatic Control, 37, 639-642 (1992) · doi:10.1109/9.135504
[17] Morgül, O., A dynamic control law for the wave equation, Automatica, 30, 1785-1792 (1994) · Zbl 0815.93044 · doi:10.1016/0005-1098(94)90083-3
[18] Morgül, O., An exponential stability result for the wave equation, Automatica, 38, 731-735 (2002) · Zbl 1010.93050 · doi:10.1016/S0005-1098(01)00252-7
[19] Guo, B.-Z.; Xu, G.-Q., On basis property of a hyperbolic system with dynamic boundary condition, Differential Integral Equations, 18, 35-60 (2005) · Zbl 1212.93161
[20] Russell, D. L., A general framework for the study of indirect damping mechanisms in elastic systems, Journal of Mathematical Analysis and Applications, 173, 2, 339-358 (1993) · Zbl 0771.73045 · doi:10.1006/jmaa.1993.1071
[21] Wu, X.; Tang, S.; Guo, J.; Zhang, Y., Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer, Mathematical Problems in Engineering, 2015 (2015) · Zbl 1394.93241 · doi:10.1155/2015/262753
[22] Feng, H.; Guo, B.-Z., On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems, SIAM Journal on Control and Optimization, 53, 4, 1934-1955 (2015) · Zbl 1317.93118 · doi:10.1137/140962346
[23] Liu, Z.; Rao, B., Characterization of polynomial decay rate for the solution of linear evolution equation, Zeitschrift für Angewandte Mathematik und Physik, 56, 630-644 (2005) · Zbl 1100.47036
[24] Liu, Z.; Rao, B., Frequency domain approach for the polynomial stability of a system of partially damped wave equations, Journal of Mathematical Analysis and Applications, 335, 2, 860-881 (2007) · Zbl 1152.35069 · doi:10.1016/j.jmaa.2007.02.021
[25] Borichev, A.; Tomilov, Y., Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347, 2, 455-478 (2010) · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[26] Littman, W.; Markus, L., Some recent results on control and stabilization of flexible structures, Proceedings of COMCON Workshop, Montpellier · Zbl 0755.00020 · doi:10.1007/BFb0005143
[27] Xu, G.-Q., Eventually norm continuous semigroups on Hilbert space and perturbations, Journal of Mathematical Analysis and Applications, 289, 2, 493-504 (2004) · Zbl 1063.47035 · doi:10.1016/j.jmaa.2003.08.034
[28] Shang, Y. F.; Xu, G. Q., Dynamic feedback control and exponential stabilization of a compound system, Journal of Mathematical Analysis and Applications, 422, 2, 858-879 (2015) · Zbl 1297.93131 · doi:10.1016/j.jmaa.2014.09.013
[29] Tucsnak, M.; Weiss, G., Observation and Control for Operator Semigroups (2009), Basel, Switzerland: Birkhauser Verlag, Basel, Switzerland · Zbl 1188.93002
[30] Luo, Z.; Guo, B.; Morgul, O., Stability and Stabilization of Infinite Dimensional Systems with Applications (1999), Springer · Zbl 0922.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.