×

A Petrov-Galerkin multilayer discretization to second order elliptic boundary value problems. (English) Zbl 1442.65350

Summary: We study in this paper a multilayer discretization of second order elliptic problems, aimed at providing reliable multilayer discretizations of shallow fluid flow problems with diffusive effects. This discretization is based upon the formulation by transposition of the equations. It is a Petrov-Galerkin discretization in which the trial functions are piecewise constant per horizontal layers, while the test functions are continuous piecewise linear, on a vertically shifted grid.
We prove the well posedness and optimal error order estimates for this discretization in natural norms, based upon specific inf-sup conditions.
We present some numerical tests with parallel computing of the solution based upon the multilayer structure of the discretization, for academic problems with smooth solutions, with results in full agreement with the theory developed.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Bonaventura, L.; Fernández-Nieto, E. D.; Garres-Díaz, J.; Narbona-Reina, G., Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization, J. Comput. Phys., 364, 209-234 (2018), URL https://www.sciencedirect.com/science/article/pii/S0021999118301694 · Zbl 1392.76012
[2] Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G., A multilayer shallow model for dry granular flows with the \(\mu(I)\) rheology: Application to granular collapse on erodible beds, J. Fluid Mech., 798, 643-681 (2016) · Zbl 1422.76192
[3] J., Sainte-Marie, Vertically averaged models for the free surface non-hydrostatic euler system: derivation and kinetic interpretation, Math. Models Methods Appl. Sci., 21, 459-490 (2011) · Zbl 1223.35253
[4] Cockburn, B.; Chi-Wang, S., The local discontinuous galerkin method for time-dependent convection – diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[5] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[6] Di Pietro, D. A.; Ern, A., (Mathematical Aspects of Discontinuous Galerkin methods. Mathematical Aspects of Discontinuous Galerkin methods, Mathématiques & Applications, Vol. 69 (2011), Springer-Verlag: Springer-Verlag Berlin)
[7] Bottasso, C. L.; Micheletti, S.; Sacco, R., The discontinuous Petrov-Galerkin method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 191, 3391-3409 (2002) · Zbl 1010.65050
[8] Causin, P.; Sacco, R., A discontinuous Petrov-Galerkin method with lagrangian multipliers for second order elliptic problems, SIAM J. Numer. Anal., 43, 280-302 (2005) · Zbl 1087.65105
[9] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. part i: The transport equation, Comput. Methods Appl. Mech. Engrg., 199, 1558-1572 (2010) · Zbl 1231.76142
[10] Demkowicz, L.; Gopalakrishnan, J., Analysis of the DPG method for the Poisson problem, SIAM J. Numer. Anal., 49, 1788-1809 (2011) · Zbl 1237.65122
[11] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. part II: Optimal test functions, Numer. Methods Partial Differential Equations, 27, 70-105 (2011) · Zbl 1208.65164
[12] L. Demkowicz, J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method, ICES Report 15-20, 1-21, 2015.; L. Demkowicz, J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method, ICES Report 15-20, 1-21, 2015.
[13] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer-Verlag: Springer-Verlag New York · Zbl 1220.46002
[14] Ern, A.; Guermond, J.-L., (Theory and Practice of Finite Element Methods. Theory and Practice of Finite Element Methods, Applied Mathematical Sciences, Vol. 159 (2004), Springer-Verlag: Springer-Verlag New York) · Zbl 1059.65103
[15] Bernardi, C.; Maday, Y.; Rapetti, F., (Discrétisations Variationnelles de Problèmes aux Limites Elliptiques. Discrétisations Variationnelles de Problèmes aux Limites Elliptiques, Mathématiques & Applications, Vol. 45 (2004), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1063.65119
[16] P., Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Inform. Rech. Opér. Sér. Rouge Anal. Numér., 9, 77-84 (1975) · Zbl 0368.65008
[17] F. Hecht, S. Auliac, O. Pironneau, J. Morice, A. L. Hyaric, K. Ohtsuka, P. Jolivet, Freefem++, third edition, version 3.58-1, 2018. URL http://www.freefem.org/ff++/ftp/freefem++doc.pdf; F. Hecht, S. Auliac, O. Pironneau, J. Morice, A. L. Hyaric, K. Ohtsuka, P. Jolivet, Freefem++, third edition, version 3.58-1, 2018. URL http://www.freefem.org/ff++/ftp/freefem++doc.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.