×

Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization. (English) Zbl 1392.76012

Summary: We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches.

MSC:

76D50 Stratification effects in viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography

Software:

TR-BDF2

References:

[1] Adcroft, A. J.; Hill, C. N.; Marshall, J. C., Representation of topography by shaved cells in a height coordinate Ocean model, Mon. Weather Rev., 125, 2293-2315, (1997)
[2] Audusse, E., A multilayer Saint-Venant model: derivation and numerical validation, Discrete Contin. Dyn. Syst., Ser. B, 5, 2, 189-214, (2005) · Zbl 1075.35030
[3] Audusse, E.; Benkhaldoun, F.; Sainte-Marie, J.; Seaid, M., Multilayer Saint-Venant equations over movable beds, Discrete Contin. Dyn. Syst., Ser. B, 15, 4, 917-934, (2011) · Zbl 1230.37102
[4] Audusse, E.; Bristeau, M.; Perthame, B.; Sainte-Marie, J., A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation, ESAIM: Math. Model. Numer. Anal., 45, 169-200, (2011) · Zbl 1290.35194
[5] Audusse, E.; Bristeau, M.-O.; Decoene, A., Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model, Int. J. Numer. Methods Fluids, 56, 3, 331-350, (2008) · Zbl 1139.76036
[6] Audusse, E.; Bristeau, M.-O.; Pelanti, M.; Sainte-Marie, J., Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution, J. Comput. Phys., 230, 9, 3453-3478, (2011) · Zbl 1316.76055
[7] Bank, R. E.; Coughran, W. M.; Fichtner, W.; Grosse, E. H.; Rose, D. J.; Smith, R. K., Transient simulation of silicon devices and circuits, IEEE Trans. Electron Devices, 32, 1992-2007, (1985)
[8] Berman, A.; Plemmons, R., Nonnegative matrices in the mathematical sciences, (1994), Society for Industrial and Applied Mathematics · Zbl 0815.15016
[9] Bleck, R.; Boudra, D., Wind-driven spin-up in eddy-resolving Ocean models formulated in isopycnic and isobaric coordinates, J. Geophys. Res., Oceans, 91, 7611-7621, (1986)
[10] Boittin, L., Assessment of numerical methods for uncertainty quantification in river hydraulics modelling, (2015), Politecnico di Milano, Master’s thesis
[11] Bonaventura, L., A semi-implicit, semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows, J. Comput. Phys., 158, 186-213, (2000) · Zbl 0963.76058
[12] Bonaventura, L.; Redler, R.; Budich, R., Earth system modelling 2: algorithms, code infrastructure and optimisation, (2012), Springer Verlag New York
[13] Bonaventura, L.; Ringler, T., Analysis of discrete shallow water models on geodesic Delaunay grids with C-type staggering, Mon. Weather Rev., 133, 2351-2373, (2005)
[14] Bonaventura, L.; Della Rocca, A., Unconditionally strong stability preserving extensions of the TR-BDF2 method, J. Sci. Comput., 70, 2, 859-895, (2017) · Zbl 1361.65046
[15] Boscarino, S.; Filbet, F.; Russo, G., High order semi-implicit schemes for time dependent partial differential equations, J. Sci. Comput., 68, 3, 975-1001, (Sep 2016) · Zbl 1353.65075
[16] Bryan, K., A numerical method for the study of the circulation of the world Ocean, J. Comput. Phys., 4, 347-376, (1969) · Zbl 0195.55504
[17] Castro Díaz, M. J.; Fernández-Nieto, E. D.; Ferreiro, A. M., Sediment transport models in shallow water equations and numerical approach by high order finite volume methods, Comput. Fluids, 37, 3, 299-316, (2008) · Zbl 1237.76082
[18] Casulli, V., Numerical simulation of three-dimensional free surface flow in isopycnal coordinates, Int. J. Numer. Methods Fluids, 25, 645-658, (1997) · Zbl 0893.76050
[19] Casulli, V.; Cattani, E., Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow, Comput. Math. Appl., 27, 4, 99-112, (1994) · Zbl 0796.76052
[20] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 6, 629-648, (1992) · Zbl 0762.76068
[21] Casulli, V.; Walters, R. A., An unstructured grid, three-dimensional model based on the shallow water equations, Int. J. Numer. Methods Fluids, 32, 331-348, (2000) · Zbl 0965.76061
[22] Casulli, V.; Zanolli, P., Semi-implicit numerical modelling of non-hydrostatic free-surface flows for environmental problems, Math. Comput. Model., 36, 1131-1149, (2002) · Zbl 1027.76034
[23] Decoene, A.; Bonaventura, L.; Miglio, E.; Saleri, F., Asymptotic derivation of the section-averaged shallow water equations for natural river hydraulics, Math. Models Methods Appl. Sci., 19, 03, 387-417, (2009) · Zbl 1207.35092
[24] Durran, D. R., Numerical methods for wave equations in geophysical fluid dynamics, (2013), Springer Science & Business Media
[25] Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G., A multilayer shallow model for dry granular flows with the \(\mu(I)\)-rheology: application to granular collapse on erodible beds, J. Fluid Mech., 798, 643-681, (2016) · Zbl 1422.76192
[26] Fernández-Nieto, E. D.; Koné, E. H.; Rebollo Chacón, T., A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution, J. Sci. Comput., 60, 2, 408-437, (2014) · Zbl 1299.76134
[27] Garegnani, G.; Rosatti, G.; Bonaventura, L., Free surface flows over mobile bed: mathematical analysis and numerical modeling of coupled and decoupled approaches, Commun. Appl. Ind. Math., 1, 3, (2011) · Zbl 1329.76360
[28] Garegnani, G.; Rosatti, G.; Bonaventura, L., On the range of validity of the exner-based models for mobile-bed river flow simulations, J. Hydraul. Res., 51, 380-391, (2013)
[29] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, (2013) · Zbl 1280.86008
[30] Gross, E. S.; Bonaventura, L.; Rosatti, G., Consistency with continuity in conservative advection schemes for free-surface models, Int. J. Numer. Methods Fluids, 38, 307-327, (2002) · Zbl 1009.76063
[31] Haidvogel, D.; Wilkin, J.; Young, R., A semi-spectral primitive equation Ocean circulation model using sigma and orthogonal curvilinear coordinates, J. Comput. Phys., 94, 151-185, (1991) · Zbl 0718.76077
[32] Haney, R. L., On the pressure gradient force over steep topography in sigma coordinate Ocean models, J. Phys. Oceanogr., 21, 610-619, (1991)
[33] Hosea, M. E.; Shampine, L. F., Analysis and implementation of TR-BDF2, Appl. Numer. Math., 20, 21-37, (1996) · Zbl 0859.65076
[34] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181, (2003) · Zbl 1013.65103
[35] Lambert, J. D., Numerical methods for ordinary differential systems, (1991), Wiley · Zbl 0745.65049
[36] Nickalls, R. W.D., 95.60 a new bound for polynomials when all the roots are real, Math. Gaz., 95, 534, 520-526, (2011)
[37] Rosatti, G.; Bonaventura, L.; Deponti, A.; Garegnani, G., An accurate and efficient semi-implicit method for section-averaged free-surface flow modelling, Int. J. Numer. Methods Fluids, 65, 448-473, (2011) · Zbl 1428.76138
[38] Tumolo, G.; Bonaventura, L., A semi-implicit, semi-Lagrangian, DG framework for adaptive numerical weather prediction, Q. J. R. Meteorol. Soc., 141, 2582-2601, (2015)
[39] Tumolo, G.; Bonaventura, L.; Restelli, M., A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations, J. Comput. Phys., 232, 46-67, (2013) · Zbl 1291.65305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.