×

On the positive periodic solutions of a class of Liénard equations with repulsive singularities in degenerate case. (English) Zbl 1526.34021

In this paper, the authors analyze the existence, multiplicity and dynamics of \(T\)-periodic solutions of the Liénard equation \[ x''+f(x)x'+h(t,x)=s, \] where \(f:(0,+\infty)\rightarrow\mathbb{R}\) is continuous, \(h:\mathbb{R}\times(0,+\infty)\rightarrow\mathbb{R}\) is continuous, \(T\)-periodic in the first variable and has a repulsive singularity at the origin, and \(s\) is a real parameter. Moreover, some boundedness and asymptotic assumptions on \(h\) and on the primitive function of \(f\) are made.
The main result of the paper is a classical Ambrosetti-Prodi type result for the equation above. Namely, it is proven the existence of a \(s^\ast\in\mathbb{R}\) such that the equation has \(T\)-periodic positive solutions if, and only if, \(s\leq s^\ast\). More precisely, it has, at least, one if \(s=s^\ast\) and, at least, two if \(s<s^\ast\). Furthermore, when \(s\to-\infty\), there is a \(T\)-periodic positive solution whose minimum tends to \(+\infty\) and another one whose minimum tends to 0.
Finally, some particulars cases and an application to indefinite problems are studied.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
47H11 Degree theory for nonlinear operators
37C60 Nonautonomous smooth dynamical systems
34B16 Singular nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Bereanu, C.; Mawhin, J., Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differ. Equ., 243, 536-557 (2007) · Zbl 1148.34013
[2] Boscaggin, A.; Feltrin, G., Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differ. Equ., 269, 5595-5645 (2020) · Zbl 1445.34064
[3] Boscaggin, A.; Feltrin, G.; Zanolin, F., Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Am. Math. Soc., 370, 791-845 (2018) · Zbl 1393.34038
[4] Chen, H.; Tang, Y.; Xiao, D., Global dynamics of a quintic Liénard system with \(\mathbb{Z}_2\)-symmetry I: saddle case, Nonlinearity, 34, 4332-4372 (2021) · Zbl 1478.34033
[5] Cheng, Z.; Gu, L., Positive periodic solution to a second-order differential equation with attractive-repulsive singularities, Rocky Mt. J. Math., 52, 77-85 (2022) · Zbl 1507.34027
[6] Cheng, Z.; Cui, X., Positive periodic solution for generalized Basener-Ross model, Discrete Contin. Dyn. Syst., Ser. B, 25, 4361-4382 (2020) · Zbl 1458.34084
[7] Chu, J., On a nonlinear model for arctic gyres, Ann. Mat. Pura Appl., 197, 651-659 (2018) · Zbl 1392.86031
[8] Chu, J.; Nieto, J. J., Impulsive periodic solutions of first-order singular differential equations, Bull. Lond. Math. Soc., 40, 143-150 (2008) · Zbl 1144.34016
[9] Chu, J.; Torres, P. J.; Zhang, M., Periodic solutions of second order non-autonomous singular dynamical systems, J. Differ. Equ., 239, 196-212 (2007) · Zbl 1127.34023
[10] Chu, J.; Li, S.; Zhu, H., Nontrivial periodic solutions of second order singular damped dynamical systems, Rocky Mt. J. Math., 45, 457-474 (2015) · Zbl 1327.34068
[11] Chu, J., Prevalence of stable periodic solutions for Duffing equations, J. Differ. Equ., 260, 7800-7820 (2016) · Zbl 1350.34037
[12] Chu, J.; Torres, P. J.; Wang, F., Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem, Discrete Contin. Dyn. Syst., 35, 1921-1932 (2015) · Zbl 1323.34055
[13] Chu, J.; Wang, Z., Nagumo-type uniqueness and stability for nonlinear differential equations on semi-infinite intervals, J. Differ. Equ., 367, 229-245 (2023) · Zbl 1526.34008
[14] Constantin, A.; Johnson, R. S., On the propagation of nonlinear waves in the atmosphere, Proc. R. Soc. A, 478, Article 20210895 pp. (2022)
[15] Constantin, A.; Johnson, R. S., Atmospheric undular bores, Math. Ann. (2023), in press
[16] Coster, C. D.; Habets, P., Two-point Boundary Value Problems: Lower and Upper Solutions (2006), Elsevier: Elsevier Amsterdam · Zbl 1330.34009
[17] Feltrin, G.; Sovrano, E.; Zanolin, F., Periodic solutions to parameter-dependent equations with a ϕ−Laplacian type operator, Nonlinear Differ. Equ. Appl., 26, Article 38 pp. (2019) · Zbl 1434.34037
[18] Fabry, C.; Mawhin, J.; Nkashama, M. N., A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 18, 173-180 (1986) · Zbl 0586.34038
[19] Fonda, A.; Sfecci, A., On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149, 146-155 (2017) · Zbl 1385.34030
[20] Francoise, J.; Xiao, D., Perturbation theory of a symmetric center within Liénard equations, J. Differ. Equ., 259, 2408-2429 (2015) · Zbl 1387.34088
[21] Gutiérrez, A.; Torres, P. J., Non-autonomous saddle-node bifurcation in a canonical electrostatic MEMS, Int. J. Bifurc. Chaos, 23, Article 1350088 pp. (2013) · Zbl 1270.34125
[22] Godoy, J.; Hakl, R.; Yu, X., Existence and multiplicity of periodic solutions to differential equations with attractive singularities, Proc. R. Soc. Edinb., Sect. A, Math., 152, 402-427 (2022) · Zbl 1537.34059
[23] Hakl, R.; Torres, P. J., On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Equ., 248, 111-126 (2010) · Zbl 1187.34049
[24] Hakl, R.; Torres, P. J.; Zamora, M., Periodic solutions of singular second order differential equations: upper and lower functions, Nonlinear Anal., 749, 7078-7093 (2011) · Zbl 1232.34068
[25] Hakl, R.; Torres, P. J.; Zamora, M., Periodic solutions of singular second order differential equations: the repulsive case, Topol. Methods Nonlinear Anal., 39, 199-220 (2012) · Zbl 1279.34038
[26] Hakl, R.; Zamora, M., Existence and uniqueness of a periodic solution to an indefinite attractive singular equation, Ann. Mat. Pura Appl., 195, 995-1009 (2016) · Zbl 1345.34072
[27] Mawhin, J., The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc., 8, 375-388 (2006) · Zbl 1109.34033
[28] Manásevich, R.; Mawhin, J., Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differ. Equ., 45, 367-393 (1998) · Zbl 0910.34051
[29] Ortega, R.; Zhao, L., Generalized periodic orbits in some restricted three-body problems, Z. Angew. Math. Phys., 72, 40 (2021) · Zbl 1498.70015
[30] Sovrano, E.; Zanolin, F., Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 18, 169-182 (2018) · Zbl 1459.34075
[31] Torres, P. J.; Zamora, M., On the planar \(L_p\) Minkowski problem with sign-changing data, Proc. Am. Math. Soc., 149, 3077-3088 (2021) · Zbl 1471.34080
[32] Villari, G., A survival kit in phase plane analysis: some basic models and problems, (Nonlinear Water Waves. Nonlinear Water Waves, Lecture Notes in Math., vol. 2158 (2016), Springer: Springer Cham), 197-228 · Zbl 1353.92087
[33] Xiao, D.; Zhang, Z., On the existence and uniqueness of limit cycles for generalized Liénard systems, J. Math. Anal. Appl., 343, 299-309 (2008) · Zbl 1143.34020
[34] Yu, X.; Lu, S., A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math., 24, Article 2150012 pp. (2022) · Zbl 1503.34090
[35] X. Yu, S. Lu, R. Hakl, On periodic solutions to ϕ-Laplacian equations with attractive singularities in the Carathéodory case, preprint.
[36] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative Theory of Differential Equations, Transl. Math. Monogr., vol. 101 (1992), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.