×

An \(h\)-adaptive RKDG method with troubled-cell indicator for one-dimensional detonation wave simulations. (English) Zbl 1355.65135

Summary: In this work, we discuss an extension of the adaptive technique of H. Zhu and J. Qiu [J. Comput. Phys. 228, No. 18, 6957–6976 (2009; Zbl 1173.65339)] to design an \(h\)-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method for the simulations of several classical one-dimensional detonation waves. The TVB troubled-cell indicator is employed to detect the troubled cells which are believed to contain the discontinuities. An adaptive mesh is generated at each time-level by refining the troubled cells and coarsening the others. A recursive multi-level mesh refinement technique is designed to avoid the problem that the detonation front moves so fast that there are not enough cells to resolve the detonation front before it leaves. We describe the numerical implementation in detail including the adaptive procedure, solution reconstruction method and troubled-cell indicator. Furthermore, a high order positivity-preserving technique is employed for the robustness of our algorithm. Extensive numerical tests are conducted to show the effectiveness of the adaptive strategy and advantages of our adaptive method over the fixed-mesh RKDG method in saving the computational storage and improving the solution quality.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1173.65339
Full Text: DOI

References:

[1] Azarenok, B.N., Tang, T.: Second-order Godunov-type scheme for reactive flow calculations on moving meshes. J. Comput. Phys. 206, 48-80 (2005) · Zbl 1087.76076 · doi:10.1016/j.jcp.2004.12.002
[2] Billet, G., Ryan, J., Borrel, M.: A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids. In: 7th International Conference on Computational Fluid Dynamics, (ICCFD7-4201), Big Island, Hawaii (2012) · Zbl 1391.76813
[3] Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255-283 (1994) · Zbl 0826.65084 · doi:10.1016/0168-9274(94)90029-9
[4] Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191-3211 (2008) · Zbl 1136.65076 · doi:10.1016/j.jcp.2007.11.038
[5] Bourlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303-343 (1991) · Zbl 0731.76076 · doi:10.1137/0151016
[6] Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766-1792 (2011) · Zbl 1211.65108 · doi:10.1016/j.jcp.2010.11.028
[7] Clarke, J.F., Karni, S., Quirk, J.J., Roe, P.L., Simmonds, L.G., Toro, E.F.: Numerical computation of two-dimensional unsteady detonation waves in high energy solids. J. Comput. Phys. 106, 215-233 (1993) · Zbl 0770.76040 · doi:10.1016/S0021-9991(83)71104-6
[8] Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comp. 54, 545-581 (1990) · Zbl 0695.65066
[9] Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[10] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comp. 52, 411-435 (1989) · Zbl 0662.65083
[11] Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[12] Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer Anal. 45, 514-538 (2007) · Zbl 1145.65072 · doi:10.1137/050624248
[13] Devine, K., Flaherty, J.: Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math. 20, 367-386 (1996) · Zbl 0860.65095 · doi:10.1016/0168-9274(95)00103-4
[14] Dou, H.S., Tsai, H.M., Khoo, B.C., Qiu, J.: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust. Flame 154, 644-659 (2008) · doi:10.1016/j.combustflame.2008.06.013
[15] Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib.Comput. 47, 139-152 (1997) · Zbl 0937.65107 · doi:10.1006/jpdc.1997.1412
[16] Gao, Z., Don, W.S.: Mapped hybrid Central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351-371 (2013) · Zbl 1271.65121 · doi:10.1007/s10915-012-9635-2
[17] Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for one-dimensional detonation wave simulations. J. Comput. Math. 29, 623-638 (2011) · Zbl 1265.76042 · doi:10.4208/jcm.1110-m11si02
[18] Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for two-dimensional detonation wave simulations. J. Sci. Comput. 53, 80-101 (2012) · Zbl 1270.76047 · doi:10.1007/s10915-011-9569-0
[19] Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979-1004 (2002) · Zbl 1034.65081 · doi:10.1137/S1064827501389084
[20] Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comp. Phy. 207, 542-567 (2005) · Zbl 1072.65114 · doi:10.1016/j.jcp.2005.01.023
[21] Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[22] LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comp. Phy. 86, 187-210 (1990) · Zbl 0682.76053 · doi:10.1016/0021-9991(90)90097-K
[23] Papalexandris, M.V., Leonard, A., Dimotakis, P.E.: Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension. J. Comp. Phy. 134, 31-61 (1997) · Zbl 0880.65074 · doi:10.1006/jcph.1997.5692
[24] Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci Comput. 27, 995-1013 (2005) · Zbl 1092.65084 · doi:10.1137/04061372X
[25] Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53-72 (2003) · Zbl 1127.65323 · doi:10.1137/S00361445023830
[26] Sharpe, G.J., Falle, S.A.E.G.: Two-dimensional numerical simulations of idealized detonations. Proc. R Soc. 456, 2081-2100 (2000) · Zbl 0960.80003 · doi:10.1098/rspa.2000.0603
[27] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[28] Tsuboi, N., Daimon, Y., Hayashi, A.K.: Three-dimensional numerical simulation of detonations in coaxial tubes. Shock Waves 18, 379-392 (2008) · Zbl 1255.76149 · doi:10.1007/s00193-008-0152-z
[29] Wang, C., Ning, J.G., Ma, T.B.: Numerical simulation of detonation and multi-material interface tracking. Comput. Mater. Con. 22, 73-96 (2011) · Zbl 0731.76076
[30] Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653-665 (2012) · Zbl 1243.80011 · doi:10.1016/j.jcp.2011.10.002
[31] Yuan, L., Zhang, L.: A Runge-Kutta discontinuous Galerkin method for detonation wave simulation. AIP Conf. Proc. 1376, 543-545 (2011) · doi:10.1063/1.3651971
[32] Zhang, Z.C., Yu, S.T., He, H., Chang, S.C.: Direct calculation of two- and three- dimensional detonations by an extended CE/SE method. AIAA, pp. 2001-0476 (2001) · Zbl 1278.65159
[33] Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957-6976 (2009) · Zbl 1173.65339 · doi:10.1016/j.jcp.2009.06.022
[34] Zhu, H., Qiu, J.: An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv. Comput. Math. 39, 445-463 (2013) · Zbl 1278.65159 · doi:10.1007/s10444-012-9287-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.