×

Topological shadows and complexity of islands in multiboundary wormholes. (English) Zbl 1460.83027

Summary: Recently, remarkable progress in recovering the Page curve of an evaporating black hole (BH) in Jackiw-Teitelboim gravity has been achieved through use of Quantum Extremal surfaces (QES). Multi-boundary Wormhole (MbW) models have been crucial in parallel model building in three dimensions. Motivated by this we here use the latter models to compute the subregion complexity of the Hawking quanta of the evaporating BH in \(\mathrm{AdS}_3\) and obtain the Page curve associated with this information theoretic measure. We use three- and \(n\)-boundary wormhole constructions to elucidate our computations of volumes below the Hubeny-Rangamani-Takayanagi (HRT) surfaces at different times. Time is represented by the growing length of the throat horizons corresponding to smaller exits of the multi-boundary wormhole and the evaporating bigger exit shrinks with evolving time. We track the change in choice of HRT surfaces with time and plot the volume with time. The smooth transition of Page curve is realized by a discontinuous jump at Page time in volume subregion complexity plots and the usual Page transition is realized as a phase transition due to the inclusion of the island in this context. We discuss mathematical intricacies and physical insights regarding the inclusion of the extra volume at Page time. The analysis is backed by calculations and lessons from kinematic space and tensor networks.

MSC:

83C45 Quantization of the gravitational field
83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T45 Topological field theories in quantum mechanics

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[3] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045 (2006) · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[4] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[5] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[6] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[7] Engelhardt, N.; Wall, AC, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[8] Engelhardt, N.; Fischetti, S., Surface theory: the classical, the quantum, and the holographic, Class. Quant. Grav., 36, 205002 (2019) · Zbl 1478.83246 · doi:10.1088/1361-6382/ab3bda
[9] Page, DN, Information in black hole radiation, Phys. Rev. Lett., 71, 3743 (1993) · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[10] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[11] Penington, G., Entanglement wedge reconstruction and the information paradox, JHEP, 09, 002 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[12] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[13] G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
[14] Almheiri, A.; Mahajan, R.; Santos, JE, Entanglement islands in higher dimensions, SciPost Phys., 9, 001 (2020) · doi:10.21468/SciPostPhys.9.1.001
[15] Akers, C.; Engelhardt, N.; Harlow, D., Simple holographic models of black hole evaporation, JHEP, 08, 032 (2020) · Zbl 1454.83044 · doi:10.1007/JHEP08(2020)032
[16] Li, T.; Chu, J.; Zhou, Y., Reflected entropy for an evaporating black hole, JHEP, 11, 155 (2020) · Zbl 1456.83060 · doi:10.1007/JHEP11(2020)155
[17] Balasubramanian, V.; Kar, A.; Parrikar, O.; Sárosi, G.; Ugajin, T., Geometric secret sharing in a model of Hawking radiation, JHEP, 01, 177 (2021) · Zbl 1459.83023 · doi:10.1007/JHEP01(2021)177
[18] S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, arXiv:1905.00577 [INSPIRE].
[19] Takayanagi, T.; Umemoto, K., Entanglement of purification through holographic duality, Nature Phys., 14, 573 (2018) · doi:10.1038/s41567-018-0075-2
[20] Bhattacharyya, A.; Takayanagi, T.; Umemoto, K., Entanglement of purification in free scalar field theories, JHEP, 04, 132 (2018) · Zbl 1390.81065 · doi:10.1007/JHEP04(2018)132
[21] Jefferson, R.; Myers, RC, Circuit complexity in quantum field theory, JHEP, 10, 107 (2017) · Zbl 1383.81233 · doi:10.1007/JHEP10(2017)107
[22] Chapman, S., Complexity and entanglement for thermofield double states, SciPost Phys., 6, 034 (2019) · doi:10.21468/SciPostPhys.6.3.034
[23] Caceres, E.; Chapman, S.; Couch, JD; Hernández, JP; Myers, RC; Ruan, S-M, Complexity of mixed states in QFT and holography, JHEP, 03, 012 (2020) · Zbl 1435.83141 · doi:10.1007/JHEP03(2020)012
[24] Carmi, D.; Myers, RC; Rath, P., Comments on holographic complexity, JHEP, 03, 118 (2017) · Zbl 1377.81160 · doi:10.1007/JHEP03(2017)118
[25] Harlow, D.; Hayden, P., Quantum computation vs. firewalls, JHEP, 06, 085 (2013) · Zbl 1342.83169 · doi:10.1007/JHEP06(2013)085
[26] Brown, AR; Gharibyan, H.; Penington, G.; Susskind, L., The Python’s lunch: geometric obstructions to decoding Hawking radiation, JHEP, 08, 121 (2020) · Zbl 1454.83046 · doi:10.1007/JHEP08(2020)121
[27] Bao, N.; Chatwin-Davies, A.; Remmen, GN, Warping wormholes with dust: a metric construction of the Python’s lunch, JHEP, 09, 102 (2020) · Zbl 1454.83079 · doi:10.1007/JHEP09(2020)102
[28] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81019
[29] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic complexity equals bulk action?, Phys. Rev. Lett., 116, 191301 (2016) · doi:10.1103/PhysRevLett.116.191301
[30] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Complexity, action, and black holes, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.086006
[31] Alishahiha, M., Holographic complexity, Phys. Rev. D, 92, 126009 (2015) · doi:10.1103/PhysRevD.92.126009
[32] Abt, R., Topological complexity in AdS_3/CFT_2, Fortsch. Phys., 66, 1800034 (2018) · Zbl 1535.81213 · doi:10.1002/prop.201800034
[33] Abt, R.; Erdmenger, J.; Gerbershagen, M.; Melby-Thompson, CM; Northe, C., Holographic subregion complexity from kinematic space, JHEP, 01, 012 (2019) · Zbl 1409.83083 · doi:10.1007/JHEP01(2019)012
[34] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Integral geometry and holography, JHEP, 10, 175 (2015) · Zbl 1388.83217 · doi:10.1007/JHEP10(2015)175
[35] F. Bonahon, Low-dimensional geometry: from Euclidean surfaces to hyperbolic knots, IAS/Park city mathematical subseries, American Mathematical Society, U.S.A. (2009). · Zbl 1176.57001
[36] S. Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, U.S.A. (1992). · Zbl 0753.30001
[37] Casson, A.; Casson, A.; Bleiler, S., Automorphisms of surfaces after Nielsen and Thurston (1988), London Mathematical Society Student Texts: Cambridge University Press, Cambridge, U.K, London Mathematical Society Student Texts · Zbl 0649.57008 · doi:10.1017/CBO9780511623912
[38] A. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, Springer, New York, NY, U.S.A. (2012).
[39] Munkres, J., Topology (2000), U.S.A: Prentice Hall Inc., U.S.A · Zbl 0951.54001
[40] Schultens, J., Introduction to 3-manifolds, Graduate Studies in Mathematics (2014), U.S.A: American Mathematical Society, U.S.A · Zbl 1295.57001
[41] Brill, DR, Multi-black hole geometries in (2 + 1)-dimensional gravity, Phys. Rev. D, 53, 4133 (1996) · doi:10.1103/PhysRevD.53.R4133
[42] Aminneborg, S.; Bengtsson, I.; Brill, D.; Holst, S.; Peldan, P., Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav., 15, 627 (1998) · Zbl 0913.53041 · doi:10.1088/0264-9381/15/3/013
[43] Skenderis, K.; van Rees, BC, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys., 301, 583 (2011) · Zbl 1223.83037 · doi:10.1007/s00220-010-1163-z
[44] Balasubramanian, V.; Hayden, P.; Maloney, A.; Marolf, D.; Ross, SF, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav., 31, 185015 (2014) · Zbl 1300.81067 · doi:10.1088/0264-9381/31/18/185015
[45] Caceres, E.; Kundu, A.; Patra, AK; Shashi, S., A Killing vector treatment of multiboundary wormholes, JHEP, 02, 149 (2020) · Zbl 1435.83075 · doi:10.1007/JHEP02(2020)149
[46] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[47] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D48 (1993) 1506 [Erratum ibid.88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
[48] Rangamani, M.; Takayanagi, T., Holographic entanglement entropy, Lect. Notes Phys., 931, 1 (2017) · Zbl 1371.81011 · doi:10.1007/978-3-319-52573-0_1
[49] Peach, A.; Ross, SF, Tensor network models of multiboundary wormholes, Class. Quant. Grav., 34, 105011 (2017) · Zbl 1369.83097 · doi:10.1088/1361-6382/aa6b0f
[50] Bao, N.; Chatwin-Davies, A.; Remmen, GN, Entanglement of purification and multiboundary wormhole geometries, JHEP, 02, 110 (2019) · Zbl 1411.81169 · doi:10.1007/JHEP02(2019)110
[51] Bhattacharya, A., Multipartite purification, multiboundary wormholes, and islands in AdS_3/CFT_2, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.046013
[52] Nguyen, P.; Devakul, T.; Halbasch, MG; Zaletel, MP; Swingle, B., Entanglement of purification: from spin chains to holography, JHEP, 01, 098 (2018) · Zbl 1384.81117 · doi:10.1007/JHEP01(2018)098
[53] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A stereoscopic look into the bulk, JHEP, 07, 129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[54] Zhang, J-D; Chen, B., Kinematic space and wormholes, JHEP, 01, 092 (2017) · Zbl 1373.83073 · doi:10.1007/JHEP01(2017)092
[55] Czech, B.; Lamprou, L., Holographic definition of points and distances, Phys. Rev. D, 90, 106005 (2014) · doi:10.1103/PhysRevD.90.106005
[56] Balasubramanian, V.; Chowdhury, BD; Czech, B.; de Boer, J., Entwinement and the emergence of spacetime, JHEP, 01, 048 (2015) · Zbl 1388.83633 · doi:10.1007/JHEP01(2015)048
[57] Erdmenger, J.; Gerbershagen, M., Entwinement as a possible alternative to complexity, JHEP, 03, 082 (2020) · Zbl 1435.83147 · doi:10.1007/JHEP03(2020)082
[58] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[59] Vidal, G., Entanglement renormalization, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.220405
[60] Evenbly, G.; Vidal, G., Entanglement renormalization in two spatial dimensions, Phys. Rev. Lett., 102, 180406 (2009) · doi:10.1103/PhysRevLett.102.180406
[61] B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
[62] Czech, B., Tensor network quotient takes the vacuum to the thermal state, Phys. Rev. B, 94 (2016) · doi:10.1103/PhysRevB.94.085101
[63] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[64] Franco-Rubio, A.; Vidal, G., Entanglement and correlations in the continuous multi-scale entanglement renormalization ansatz, JHEP, 12, 129 (2017) · Zbl 1383.81210 · doi:10.1007/JHEP12(2017)129
[65] Bhattacharyya, A.; Gao, Z-S; Hung, L-Y; Liu, S-N, Exploring the tensor networks/AdS correspondence, JHEP, 08, 086 (2016) · Zbl 1390.83178 · doi:10.1007/JHEP08(2016)086
[66] Thomas, A., Geometric and topological aspects of Coxeter groups and buildings (2018), Zurich lectures in advanced mathematics: European Mathematical Society Publishing House, Zurich lectures in advanced mathematics · Zbl 1415.20005 · doi:10.4171/189
[67] Davis, M., The geometry and topology of Coxeter groups (2008), L.M.S. monographs: Princeton University Press, Princeton, NJ, U.S.A, L.M.S. monographs · Zbl 1142.20020
[68] Fu, Z.; Maloney, A.; Marolf, D.; Maxfield, H.; Wang, Z., Holographic complexity is nonlocal, JHEP, 02, 072 (2018) · Zbl 1387.81314 · doi:10.1007/JHEP02(2018)072
[69] Balasubramanian, V.; DeCross, M.; Kar, A.; Parrikar, O., Binding complexity and multiparty entanglement, JHEP, 02, 069 (2019) · Zbl 1411.81168 · doi:10.1007/JHEP02(2019)069
[70] Cáceres, E.; Couch, J.; Eccles, S.; Fischler, W., Holographic purification complexity, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.086016
[71] J. Hernandez, R. C. Myers and S.-M. Ruan, Quantum extremal islands made easy, part III: complexity on the brane, arXiv:2010.16398 [INSPIRE].
[72] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Tensor networks from kinematic space, JHEP, 07, 100 (2016) · Zbl 1390.83102 · doi:10.1007/JHEP07(2016)100
[73] Czech, B.; Olivas, YD; Wang, Z-Z, Holographic integral geometry with time dependence, JHEP, 12, 063 (2020) · Zbl 1457.83056 · doi:10.1007/JHEP12(2020)063
[74] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121 (2020) · Zbl 1454.83113 · doi:10.1007/JHEP09(2020)121
[75] Chen, HZ; Myers, RC; Neuenfeld, D.; Reyes, IA; Sandor, J., Quantum extremal islands made easy, part I: entanglement on the brane, JHEP, 10, 166 (2020) · Zbl 1456.81332
[76] Chen, HZ; Myers, RC; Neuenfeld, D.; Reyes, IA; Sandor, J., Quantum extremal islands made easy, part II: black holes on the brane, JHEP, 12, 025 (2020) · Zbl 1457.81084 · doi:10.1007/JHEP12(2020)025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.