×

On the Kerr-AdS/CFT correspondence. (English) Zbl 1381.81104

Summary: We review the relation between four-dimensional global conformal blocks and field propagation in \(\mathrm{AdS}_{5}\). Following the standard argument that marginal perturbations should backreact in the geometry, we turn to the study of scalar fields in the generic Kerr-\(\mathrm{AdS}_{5}\) geometry. On one hand, the result for scattering coefficients can be obtained exactly using the isomonodromy technique, giving exact expressions in terms of \(c=1\) chiral conformal blocks. On the other hand, one can use the analogy between the scalar field equations to the Level 2 null field Ward identity in two dimensional Liouville field theory to write approximate expressions for the same coefficients in terms of semi-classical chiral Liouville conformal blocks. Surprisingly, the conformal block thus constructed has a well-behaved interpretation in terms of Liouville vertex operators.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
83E30 String and superstring theories in gravitational theory

References:

[1] D. Marolf, Black holes, AdS and CFTs, Gen. Rel. Grav.41 (2009) 903 [arXiv:0810.4886] [INSPIRE]. · Zbl 1177.83089 · doi:10.1007/s10714-008-0749-7
[2] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP12 (1998) 022 [hep-th/9810126] [INSPIRE]. · Zbl 0949.81053 · doi:10.1088/1126-6708/1998/12/022
[3] O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev.D 62 (2000) 046008 [hep-th/9909134] [INSPIRE]. · Zbl 1390.83101
[4] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE]. · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[5] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev.D 62 (2000) 024027 [hep-th/9909056] [INSPIRE]. · Zbl 1388.83239
[6] S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and gravitational scattering, Nucl. Phys.B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE]. · Zbl 1332.81157 · doi:10.1016/j.nuclphysb.2015.10.013
[7] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE]. · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[8] A. Neitzke, Greybody factors at large imaginary frequencies, hep-th/0304080 [INSPIRE].
[9] L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys.7 (2003) 307 [hep-th/0301173] [INSPIRE]. · doi:10.4310/ATMP.2003.v7.n2.a4
[10] F. Novaes and B. Carneiro da Cunha, Isomonodromy, Painlevé transcendents and scattering off of black holes, JHEP07 (2014) 132 [arXiv:1404.5188] [INSPIRE]. · Zbl 1333.83107 · doi:10.1007/JHEP07(2014)132
[11] B. Carneiro da Cunha and F. Novaes, Kerr-de Sitter greybody factors via isomonodromy, Phys. Rev.D 93 (2016) 024045 [arXiv:1508.04046] [INSPIRE].
[12] O. Gamayun, N. Iorgov and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys.A 46 (2013) 335203 [arXiv:1302.1832] [INSPIRE]. · Zbl 1282.34096
[13] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[14] V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys.98 (2011) 33 [arXiv:1012.1312] [INSPIRE]. · Zbl 1242.81119 · doi:10.1007/s11005-011-0503-z
[15] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP10 (2012) 165 [arXiv:1201.3664] [INSPIRE]. · doi:10.1007/JHEP10(2012)165
[16] A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole monodromy and conformal field theory, Phys. Rev.D 88 (2013) 044003 [arXiv:1303.0759] [INSPIRE]. · Zbl 1273.83093
[17] A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole scattering from monodromy, Class. Quant. Grav.30 (2013) 165005 [arXiv:1304.3781] [INSPIRE]. · Zbl 1273.83093 · doi:10.1088/0264-9381/30/16/165005
[18] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE]. · Zbl 1388.81047 · doi:10.1007/JHEP01(2016)146
[19] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE]. · Zbl 1388.83239 · doi:10.1007/JHEP11(2015)200
[20] B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE]. · Zbl 0968.83514
[21] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A stereoscopic look into the bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE]. · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[22] J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE]. · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[23] S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim.2S2 (1971) 1363 [INSPIRE].
[24] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Canonical scaling and conformal invariance, Phys. Lett.38B (1972) 333 [INSPIRE]. · doi:10.1016/0370-2693(72)90259-6
[25] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE].
[26] A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev.D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE]. · Zbl 1311.30029
[27] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[28] A.L. Fitzpatrick, J. Kaplan, E. Katz and L. Randall, Decoupling of high dimension operators from the low energy sector in holographic models, arXiv:1304.3458 [INSPIRE]. · Zbl 1177.83089
[29] M. Bochicchio, An asymptotic solution of large-N QCD and of large-\[NN=1 \mathcal{N}=1\] SUSY YM, arXiv:1409.5149 [INSPIRE]. · Zbl 1060.81618
[30] S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].
[31] H. Lü, J. Mei and C.N. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP04 (2009) 054 [arXiv:0811.2225] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/054
[32] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev.D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
[33] G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav.22 (2005) 1503 [hep-th/0408217] [INSPIRE]. · Zbl 1068.83010 · doi:10.1088/0264-9381/22/9/002
[34] H.K. Kunduri and J. Lucietti, Integrability and the Kerr-(A)dS black hole in five dimensions, Phys. Rev.D 71 (2005) 104021 [hep-th/0502124] [INSPIRE].
[35] A.N. Aliev and O. Delice, Superradiant instability of five-dimensional rotating charged AdS black holes, Phys. Rev.D 79 (2009) 024013 [arXiv:0808.0280] [INSPIRE]. · Zbl 1222.83086
[36] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé: a modern theory of special functions, Aspects of Mathematics E volume 16, Braunschweig, Germany (1991). · Zbl 0743.34014
[37] M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci.18 (1982) 1137. · Zbl 0535.34042 · doi:10.2977/prims/1195183300
[38] O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP10 (2012) 038 [Erratum ibid.10 (2012) 183] [arXiv:1207.0787] [INSPIRE]. · Zbl 1397.81307
[39] A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical conformal blocks and Painlevè VI, JHEP07 (2014) 144 [arXiv:1309.4700] [INSPIRE]. · Zbl 1333.81375 · doi:10.1007/JHEP07(2014)144
[40] N. Iorgov, O. Lisovyy and J. Teschner, Isomonodromic τ -functions from Liouville conformal blocks, Commun. Math. Phys.336 (2015) 671 [arXiv:1401.6104] [INSPIRE]. · Zbl 1311.30029 · doi:10.1007/s00220-014-2245-0
[41] D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP12 (2011) 071 [arXiv:1108.4417] [INSPIRE]. · Zbl 1306.81287 · doi:10.1007/JHEP12(2011)071
[42] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, Germany (1997). · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[43] A.B. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Zh. Eksp. Teor. Fiz.90 (1986) 1808.
[44] S. Winitzki, Cosmological particle production and the precision of the WKB approximation, Phys. Rev.D 72 (2005) 104011 [gr-qc/0510001] [INSPIRE]. · Zbl 1332.81157
[45] G. Siopsis, On quasi-normal modes and the AdS5/CF T4correspondence, Nucl. Phys.B 715 (2005) 483 [hep-th/0407157] [INSPIRE]. · Zbl 1207.81137 · doi:10.1016/j.nuclphysb.2005.03.023
[46] M. Bochicchio, Renormalization in large-N QCD is incompatible with open/closed string duality, arXiv:1703.10176 [INSPIRE]. · Zbl 1411.81220
[47] M. Bochicchio, Asymptotic freedom versus open/closed duality in large-N QCD, Phys. Rev.D 95 (2017) 054010 [arXiv:1606.04546] [INSPIRE]. · Zbl 0949.81053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.