×

Torus shadow formalism and exact global conformal blocks. (English) Zbl 07795872

Summary: Using the shadow formalism we find global conformal blocks of torus \(\mathrm{CFT}_2\). It is shown that \(n\)-point torus blocks in the “necklace” channel (a loop with \(n\) legs) are expressed in terms of a hypergeometric-type function which we refer to as the necklace function.

MSC:

81-XX Quantum theory

References:

[1] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
[2] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [INSPIRE].
[3] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[4] Rosenhaus, V., Multipoint Conformal Blocks in the Comb Channel, JHEP, 02, 142 (2019) · Zbl 1411.81188 · doi:10.1007/JHEP02(2019)142
[5] Hadasz, L.; Jaskolski, Z.; Suchanek, P., Recursive representation of the torus 1-point conformal block, JHEP, 01, 063 (2010) · Zbl 1269.81162 · doi:10.1007/JHEP01(2010)063
[6] Alkalaev, KB; Geiko, RV; Rappoport, VA, Various semiclassical limits of torus conformal blocks, JHEP, 04, 070 (2017) · Zbl 1378.81098 · doi:10.1007/JHEP04(2017)070
[7] Kraus, P., Witten Diagrams for Torus Conformal Blocks, JHEP, 09, 149 (2017) · Zbl 1382.81185 · doi:10.1007/JHEP09(2017)149
[8] Alkalaev, KB; Belavin, VA, Holographic duals of large-c torus conformal blocks, JHEP, 10, 140 (2017) · Zbl 1383.81173 · doi:10.1007/JHEP10(2017)140
[9] Cho, M.; Collier, S.; Yin, X., Recursive Representations of Arbitrary Virasoro Conformal Blocks, JHEP, 04, 018 (2019) · Zbl 1415.81075 · doi:10.1007/JHEP04(2019)018
[10] Gerbershagen, M., Monodromy methods for torus conformal blocks and entanglement entropy at large central charge, JHEP, 08, 143 (2021) · Zbl 1469.81005 · doi:10.1007/JHEP08(2021)143
[11] Alkalaev, K.; Mandrygin, S.; Pavlov, M., Torus conformal blocks and Casimir equations in the necklace channel, JHEP, 10, 091 (2022) · Zbl 1534.81129 · doi:10.1007/JHEP10(2022)091
[12] Pavlov, M., Global torus blocks in the necklace channel, Eur. Phys. J. C, 83, 1026 (2023) · doi:10.1140/epjc/s10052-023-12166-7
[13] Bagchi, A.; Nandi, P.; Saha, A.; Zodinmawia, BMS Modular Diaries: Torus one-point function, JHEP, 11, 065 (2020) · Zbl 1456.81350 · doi:10.1007/JHEP11(2020)065
[14] Chen, B.; Liu, R., The shadow formalism of Galilean CFT_2, JHEP, 05, 224 (2023) · Zbl 07702039 · doi:10.1007/JHEP05(2023)224
[15] Alkalaev, KB; Belavin, VA, Holographic interpretation of 1-point toroidal block in the semiclassical limit, JHEP, 06, 183 (2016) · Zbl 1390.83078 · doi:10.1007/JHEP06(2016)183
[16] Gobeil, Y.; Maloney, A.; Ng, GS; Wu, J-Q, Thermal Conformal Blocks, SciPost Phys., 7, 015 (2019) · doi:10.21468/SciPostPhys.7.2.015
[17] Brehm, EM; Das, D.; Datta, S., Probing thermality beyond the diagonal, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.126015
[18] Ramos Cabezas, J., Semiclassical torus blocks in the t-channel, JHEP, 08, 151 (2020) · Zbl 1454.81181 · doi:10.1007/JHEP08(2020)151
[19] Alkalaev, K.; Belavin, V., More on Wilson toroidal networks and torus blocks, JHEP, 11, 121 (2020) · Zbl 1456.83054 · doi:10.1007/JHEP11(2020)121
[20] E.S. Fradkin and M.Y. Palchik, Conformal quantum field theory in D-dimensions, Springer Netherlands (1996) [doi:10.1007/978-94-015-8757-0] [INSPIRE]. · Zbl 0896.70001
[21] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[22] Osborn, H., Conformal Blocks for Arbitrary Spins in Two Dimensions, Phys. Lett. B, 718, 169 (2012) · doi:10.1016/j.physletb.2012.09.045
[23] Anous, T.; Haehl, FM, On the Virasoro six-point identity block and chaos, JHEP, 08, 002 (2020) · Zbl 1454.81140 · doi:10.1007/JHEP08(2020)002
[24] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B241 (1984) 333 [INSPIRE]. · Zbl 0661.17013
[25] Fortin, J-F; Ma, W.; Skiba, W., Higher-Point Conformal Blocks in the Comb Channel, JHEP, 07, 213 (2020) · Zbl 1451.81270 · doi:10.1007/JHEP07(2020)213
[26] J.-F. Fortin, W.-J. Ma and W. Skiba, All Global One- and Two-Dimensional Higher-Point Conformal Blocks, arXiv:2009.07674 [INSPIRE].
[27] Czech, B., A Stereoscopic Look into the Bulk, JHEP, 07, 129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[28] Dyer, E.; Freedman, DZ; Sully, J., Spinning Geodesic Witten Diagrams, JHEP, 11, 060 (2017) · Zbl 1383.81205 · doi:10.1007/JHEP11(2017)060
[29] Chen, H-Y; Kuo, E-J; Kyono, H., Anatomy of Geodesic Witten Diagrams, JHEP, 05, 070 (2017) · Zbl 1380.81303 · doi:10.1007/JHEP05(2017)070
[30] H. Bateman and Bateman Manuscript project, Higher transcendental functions. McGraw-Hill, New York, NY (1953). · Zbl 0052.29502
[31] Iliesiu, L., The Conformal Bootstrap at Finite Temperature, JHEP, 10, 070 (2018) · Zbl 1402.81226 · doi:10.1007/JHEP10(2018)070
[32] Collier, S.; Maloney, A.; Maxfield, H.; Tsiares, I., Universal dynamics of heavy operators in CFT_2, JHEP, 07, 074 (2020) · Zbl 1451.81343 · doi:10.1007/JHEP07(2020)074
[33] N. Benjamin, J. Lee, H. Ooguri and D. Simmons-Duffin, Universal Asymptotics for High Energy CFT Data, arXiv:2306.08031 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.