×

Torus conformal blocks and Casimir equations in the necklace channel. (English) Zbl 1534.81129

Summary: We consider the conformal block decomposition in arbitrary exchange channels of a two-dimensional conformal field theory on a torus. The channels are described by diagrams built of a closed loop with external legs (a necklace sub-diagram) and trivalent vertices forming trivalent trees attached to the necklace. Then, the \(n\)-point torus conformal block in any channel can be obtained by acting with a number of OPE operators on the \(k\)-point torus block in the necklace channel at \(k = 1, \dots, n\). Focusing on the necklace channel, we go to the large-\(c\) regime, where the Virasoro algebra truncates to the \(sl(2, \mathbb{R})\) subalgebra, and obtain the system of the Casimir equations for the respective \(k\)-point global conformal block. In the plane limit, when the torus modular parameter \(q\rightarrow0\), we explicitly find the Casimir equations on a plane which define the \((k + 2)\)-point global conformal block in the comb channel. Finally, we formulate the general scheme to find Casimir equations for global torus blocks in arbitrary channels.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B, 241, 333 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[2] Verlinde, EP, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B, 300, 360 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[3] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[4] Collier, S.; Lin, Y-H; Yin, X., Modular Bootstrap Revisited, JHEP, 09, 061 (2018) · Zbl 1398.83044 · doi:10.1007/JHEP09(2018)061
[5] T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass White Paper: The Analytic Conformal Bootstrap, in 2022 Snowmass Summer Study, Seattle U.S.A., 17-26 July 2022 [arXiv:2202.11012] [INSPIRE].
[6] A. Bissi, A. Sinha and X. Zhou, Selected Topics in Analytic Conformal Bootstrap: A Guided Journey, arXiv:2202.08475 [INSPIRE].
[7] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
[8] Fitzpatrick, AL; Kaplan, J.; Walters, MT, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP, 08, 145 (2014) · doi:10.1007/JHEP08(2014)145
[9] Hijano, E.; Kraus, P.; Snively, R., Worldline approach to semi-classical conformal blocks, JHEP, 07, 131 (2015) · Zbl 1388.83263 · doi:10.1007/JHEP07(2015)131
[10] Alkalaev, KB; Belavin, VA, Classical conformal blocks via AdS/CFT correspondence, JHEP, 08, 049 (2015) · Zbl 1388.83157 · doi:10.1007/JHEP08(2015)049
[11] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP, 01, 146 (2016) · Zbl 1388.81047 · doi:10.1007/JHEP01(2016)146
[12] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Semiclassical Virasoro blocks from AdS_3gravity, JHEP, 12, 077 (2015) · Zbl 1388.81940
[13] Banerjee, P.; Datta, S.; Sinha, R., Higher-point conformal blocks and entanglement entropy in heavy states, JHEP, 05, 127 (2016) · Zbl 1388.83171 · doi:10.1007/JHEP05(2016)127
[14] Cardy, JL, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B, 270, 186 (1986) · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90552-3
[15] Itzykson, C.; Zuber, JB, Two-Dimensional Conformal Invariant Theories on a Torus, Nucl. Phys. B, 275, 580 (1986) · doi:10.1016/0550-3213(86)90576-6
[16] T. Eguchi and H. Ooguri, Conformal and Current Algebras on General Riemann Surface, Nucl. Phys. B282 (1987) 308 [INSPIRE].
[17] Cho, M.; Collier, S.; Yin, X., Recursive Representations of Arbitrary Virasoro Conformal Blocks, JHEP, 04, 018 (2019) · Zbl 1415.81075 · doi:10.1007/JHEP04(2019)018
[18] P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-q. Wu, Witten Diagrams for Torus Conformal Blocks, JHEP09 (2017) 149 [arXiv:1706.00047] [INSPIRE]. · Zbl 1382.81185
[19] Alkalaev, KB; Belavin, VA, Holographic duals of large-c torus conformal blocks, JHEP, 10, 140 (2017) · Zbl 1383.81173 · doi:10.1007/JHEP10(2017)140
[20] Ramos Cabezas, J., Semiclassical torus blocks in the t-channel, JHEP, 08, 151 (2020) · Zbl 1454.81181 · doi:10.1007/JHEP08(2020)151
[21] Gerbershagen, M., Monodromy methods for torus conformal blocks and entanglement entropy at large central charge, JHEP, 08, 143 (2021) · Zbl 1469.81005 · doi:10.1007/JHEP08(2021)143
[22] Brown, JD; Henneaux, M., Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys., 104, 207 (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[23] Hadasz, L.; Jaskolski, Z.; Suchanek, P., Recursive representation of the torus 1-point conformal block, JHEP, 01, 063 (2010) · Zbl 1269.81162 · doi:10.1007/JHEP01(2010)063
[24] Dolan, FA; Osborn, H., Conformal partial waves and the operator product expansion, Nucl. Phys. B, 678, 491 (2004) · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[25] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[26] Y. Gobeil, A. Maloney, G.S. Ng and J.-q. Wu, Thermal Conformal Blocks, SciPost Phys.7 (2019) 015 [arXiv:1802.10537] [INSPIRE].
[27] Alkalaev, K.; Belavin, V., Large-c superconformal torus blocks, JHEP, 08, 042 (2018) · Zbl 1396.81155 · doi:10.1007/JHEP08(2018)042
[28] Rosenhaus, V., Multipoint Conformal Blocks in the Comb Channel, JHEP, 02, 142 (2019) · Zbl 1411.81188 · doi:10.1007/JHEP02(2019)142
[29] Fortin, J-F; Ma, W.; Skiba, W., Higher-Point Conformal Blocks in the Comb Channel, JHEP, 07, 213 (2020) · Zbl 1451.81270 · doi:10.1007/JHEP07(2020)213
[30] Zamolodchikov, A., Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Zh. Eksp. Teor. Fiz., 90, 1808 (1986)
[31] Fitzpatrick, AL; Kaplan, J.; Walters, MT, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP, 11, 200 (2015) · Zbl 1388.83239 · doi:10.1007/JHEP11(2015)200
[32] Alkalaev, KB; Belavin, VA, From global to heavy-light: 5-point conformal blocks, JHEP, 03, 184 (2016) · Zbl 1388.81618 · doi:10.1007/JHEP03(2016)184
[33] Alkalaev, KB; Geiko, RV; Rappoport, VA, Various semiclassical limits of torus conformal blocks, JHEP, 04, 070 (2017) · Zbl 1378.81098 · doi:10.1007/JHEP04(2017)070
[34] Perlmutter, E., Virasoro conformal blocks in closed form, JHEP, 08, 088 (2015) · Zbl 1388.81690 · doi:10.1007/JHEP08(2015)088
[35] G. Felder and R. Silvotti, Modular Covariance of Minimal Model Correlation Functions, Commun. Math. Phys.123 (1989) 1 [INSPIRE]. · Zbl 0693.30037
[36] Kraus, P.; Maloney, A., A cardy formula for three-point coefficients or how the black hole got its spots, JHEP, 05, 160 (2017) · Zbl 1380.81336 · doi:10.1007/JHEP05(2017)160
[37] E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev. D98 (2018) 126015 [arXiv:1804.07924] [INSPIRE].
[38] Menotti, P., Torus classical conformal blocks, Mod. Phys. Lett. A, 33, 1850166 (2018) · Zbl 1397.81311 · doi:10.1142/S0217732318501663
[39] Piatek, M., Classical torus conformal block, N = 2^*twisted superpotential and the accessory parameter of Lamé equation, JHEP, 03, 124 (2014) · doi:10.1007/JHEP03(2014)124
[40] J.-F. Fortin, W.-J. Ma and W. Skiba, All Global One- and Two-Dimensional Higher-Point Conformal Blocks, arXiv:2009.07674 [INSPIRE].
[41] Fortin, J-F; Ma, W-J; Skiba, W., Six-point conformal blocks in the snowflake channel, JHEP, 11, 147 (2020) · doi:10.1007/JHEP11(2020)147
[42] J.-F. Fortin, W.-J. Ma and W. Skiba, Seven-point conformal blocks in the extended snowflake channel and beyond, Phys. Rev. D102 (2020) 125007 [arXiv:2006.13964] [INSPIRE].
[43] D. Simmons-Duffin, The Conformal Bootstrap, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, World Scientific (2017), pp. 1-74 [DOI] [arXiv:1602.07982] [INSPIRE].
[44] R. Blumenhagen and E. Plauschinn, Introduction to Conformal Field Theory: With Applications to String Theory, Springer (2009) [DOI]. · Zbl 1175.81001
[45] J.D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [INSPIRE]. · Zbl 0179.47703
[46] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[47] M. Isachenkov and V. Schomerus, Superintegrability of d-dimensional Conformal Blocks, Phys. Rev. Lett.117 (2016) 071602 [arXiv:1602.01858] [INSPIRE]. · Zbl 1395.81227
[48] Bhatta, A.; Raman, P.; Suryanarayana, NV, Holographic Conformal Partial Waves as Gravitational Open Wilson Networks, JHEP, 06, 119 (2016) · Zbl 1388.83183 · doi:10.1007/JHEP06(2016)119
[49] Fitzpatrick, AL; Kaplan, J.; Li, D.; Wang, J., Exact Virasoro Blocks from Wilson Lines and Background-Independent Operators, JHEP, 07, 092 (2017) · Zbl 1380.81314 · doi:10.1007/JHEP07(2017)092
[50] Besken, M.; Hegde, A.; Hijano, E.; Kraus, P., Holographic conformal blocks from interacting Wilson lines, JHEP, 08, 099 (2016) · Zbl 1390.81064 · doi:10.1007/JHEP08(2016)099
[51] Y. Hikida and T. Uetoko, Conformal blocks from Wilson lines with loop corrections, Phys. Rev. D97 (2018) 086014 [arXiv:1801.08549] [INSPIRE]. · Zbl 1396.83063
[52] Hikida, Y.; Uetoko, T., Superconformal blocks from Wilson lines with loop corrections, JHEP, 08, 101 (2018) · Zbl 1396.83063 · doi:10.1007/JHEP08(2018)101
[53] Alkalaev, K.; Belavin, V., More on Wilson toroidal networks and torus blocks, JHEP, 11, 121 (2020) · Zbl 1456.83054 · doi:10.1007/JHEP11(2020)121
[54] Castro, A.; Sabella-Garnier, P.; Zukowski, C., Gravitational Wilson Lines in 3D de Sitter, JHEP, 07, 202 (2020) · Zbl 1451.83057 · doi:10.1007/JHEP07(2020)202
[55] V. Belavin and J.R. Cabezas, Wilson lines construction of \(\mathfrak{osp} (1|2)\) conformal blocks, arXiv:2204.12149 [INSPIRE].
[56] Alkalaev, KB; Belavin, VA, Holographic interpretation of 1-point toroidal block in the semiclassical limit, JHEP, 06, 183 (2016) · Zbl 1390.83078 · doi:10.1007/JHEP06(2016)183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.