×

Non-local probes in holographic theories with momentum relaxation. (English) Zbl 1390.83021

Summary: We consider recently introduced solutions of Einstein gravity with minimally coupled massless scalars. The geometry is homogeneous, isotropic and asymptotically anti de-Sitter while the scalar fields have linear spatial-dependent profiles. The spatially-dependent marginal operators dual to scalar fields cause momentum dissipation in the deformed dual CFT. We study the effect of these marginal deformations on holographic entanglement measures and Wilson loop. We show that the structure of the universal terms of entanglement entropy for \(d > 2\)-dim deformed CFTs is corrected depending on the geometry of the entangling regions. In \(d=2\) case, the universal term is not corrected while momentum relaxation leads to a non-critical correction. We also show that decrease of the correlation length causes: the phase transition of holographic mutual information to happen at smaller separations and the confinement/deconfinement phase transition to take place at smaller critical lengths. The effective potential between point like external objects also gets corrected. We show that the strength of the corresponding force between these objects is an increasing function of the momentum relaxation parameter.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)

References:

[1] S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
[2] N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
[3] Karch, A.; O’Bannon, A., Metallic AdS/CFT, JHEP, 09, 024, (2007) · doi:10.1088/1126-6708/2007/09/024
[4] Hartnoll, SA; Polchinski, J.; Silverstein, E.; Tong, D., Towards strange metallic holography, JHEP, 04, 120, (2010) · Zbl 1272.83098 · doi:10.1007/JHEP04(2010)120
[5] Charmousis, C.; Gouteraux, B.; Kim, BS; Kiritsis, E.; Meyer, R., Effective holographic theories for low-temperature condensed matter systems, JHEP, 11, 151, (2010) · Zbl 1294.81178 · doi:10.1007/JHEP11(2010)151
[6] Gouteraux, B.; Kiritsis, E., Generalized holographic quantum criticality at finite density, JHEP, 12, 036, (2011) · Zbl 1306.81237 · doi:10.1007/JHEP12(2011)036
[7] Faulkner, T.; Iqbal, N.; Liu, H.; McGreevy, J.; Vegh, D., Strange metal transport realized by gauge/gravity duality, Science, 329, 1043, (2010) · doi:10.1126/science.1189134
[8] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From Black Holes to Strange Metals, arXiv:1003.1728 [INSPIRE].
[9] Faulkner, T.; Iqbal, N.; Liu, H.; McGreevy, J.; Vegh, D., Charge transport by holographic Fermi surfaces, Phys. Rev., D 88, 045016, (2013)
[10] Hartnoll, SA; Kovtun, PK; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev., B 76, 144502, (2007) · doi:10.1103/PhysRevB.76.144502
[11] Hartnoll, SA; Herzog, CP, Impure AdS/CFT correspondence, Phys. Rev., D 77, 106009, (2008)
[12] Lucas, A.; Sachdev, S.; Schalm, K., Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev., D 89, 066018, (2014)
[13] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[14] Davison, RA, Momentum relaxation in holographic massive gravity, Phys. Rev., D 88, 086003, (2013)
[15] Blake, M.; Tong, D., Universal resistivity from holographic massive gravity, Phys. Rev., D 88, 106004, (2013)
[16] Hartnoll, SA; Hofman, DM, Locally critical resistivities from umklapp scattering, Phys. Rev. Lett., 108, 241601, (2012) · doi:10.1103/PhysRevLett.108.241601
[17] Horowitz, GT; Santos, JE; Tong, D., Optical conductivity with holographic lattices, JHEP, 07, 168, (2012) · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[18] Blake, M.; Tong, D.; Vegh, D., Holographic lattices give the graviton an effective mass, Phys. Rev. Lett., 112, 071602, (2014) · doi:10.1103/PhysRevLett.112.071602
[19] Baggioli, M.; Pujolàs, O., Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett., 114, 251602, (2015) · doi:10.1103/PhysRevLett.114.251602
[20] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolàs, O., Solid holography and massive gravity, JHEP, 02, 114, (2016) · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[21] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, JHEP, 05, 101, (2014) · doi:10.1007/JHEP05(2014)101
[22] Bao, N.; Harrison, S.; Kachru, S.; Sachdev, S., Vortex lattices and crystalline geometries, Phys. Rev., D 88, 026002, (2013)
[23] Bao, N.; Harrison, S., Crystalline scaling geometries from vortex lattices, Phys. Rev., D 88, 046009, (2013)
[24] Mohammadi Mozaffar, MR; Mollabashi, A., Crystalline geometries from a fermionic vortex lattice, Phys. Rev., D 89, 046007, (2014)
[25] Chen, L-K; Guo, H.; Shu, F-W, Crystalline geometries from fermionic vortex lattice with hyperscaling violation, Phys. Rev., D 94, 026011, (2016)
[26] Taylor, M.; Woodhead, W., Inhomogeneity simplified, Eur. Phys. J., C 74, 3176, (2014) · doi:10.1140/epjc/s10052-014-3176-9
[27] X.-H. Ge, Y. Tian, S.-Y. Wu and S.-F. Wu, Linear and quadratic in temperature resistivity from holography, arXiv:1606.07905 [INSPIRE]. · Zbl 1390.83197
[28] Roychowdhury, D., Holography for anisotropic branes with hyperscaling violation, JHEP, 01, 105, (2016) · Zbl 1388.83321 · doi:10.1007/JHEP01(2016)105
[29] S. Cremonini, H.-S. Liu, H. Lü and C.N. Pope, DC Conductivities from Non-Relativistic Scaling Geometries with Momentum Dissipation, arXiv:1608.04394 [INSPIRE]. · Zbl 1378.83016
[30] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[31] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045, (2006) · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[32] Azeyanagi, T.; Li, W.; Takayanagi, T., On string theory duals of Lifshitz-like fixed points, JHEP, 06, 084, (2009) · doi:10.1088/1126-6708/2009/06/084
[33] Banerjee, S.; Bhattacharyya, A.; Kaviraj, A.; Sen, K.; Sinha, A., Constraining gravity using entanglement in AdS/CFT, JHEP, 05, 029, (2014) · doi:10.1007/JHEP05(2014)029
[34] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, p06002, (2004) · Zbl 1082.82002
[35] Fischler, W.; Kundu, S., Strongly coupled gauge theories: high and low temperature behavior of non-local observables, JHEP, 05, 098, (2013) · Zbl 1342.83156 · doi:10.1007/JHEP05(2013)098
[36] Fischler, W.; Kundu, A.; Kundu, S., Holographic mutual information at finite temperature, Phys. Rev., D 87, 126012, (2013)
[37] Kundu, S.; Pedraza, JF, Aspects of holographic entanglement at finite temperature and chemical potential, JHEP, 08, 177, (2016) · Zbl 1390.83118 · doi:10.1007/JHEP08(2016)177
[38] Solodukhin, SN, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett., B 665, 305, (2008) · Zbl 1328.81209 · doi:10.1016/j.physletb.2008.05.071
[39] Hung, L-Y; Myers, RC; Smolkin, M., On holographic entanglement entropy and higher curvature gravity, JHEP, 04, 025, (2011) · doi:10.1007/JHEP04(2011)025
[40] A. Singh, Holographic Entanglement Entropy: RG Flows and Singular Surfaces, Ph.D. Thesis, University of Waterloo (2012).
[41] Myers, RC; Singh, A., Comments on holographic entanglement entropy and RG flows, JHEP, 04, 122, (2012) · Zbl 1348.81337 · doi:10.1007/JHEP04(2012)122
[42] Swingle, B., Entanglement entropy and the Fermi surface, Phys. Rev. Lett., 105, 050502, (2010) · doi:10.1103/PhysRevLett.105.050502
[43] Zhang, Y.; Grover, T.; Vishwanath, A., Entanglement entropy of critical spin liquids, Phys. Rev. Lett., 107, 067202, (2011) · doi:10.1103/PhysRevLett.107.067202
[44] Ding, W.; Seidel, A.; Yang, K., Entanglement entropy of Fermi liquids via multidimensional bosonization, Phys. Rev., X 2, 011012, (2012) · doi:10.1103/PhysRevX.2.011012
[45] M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett.96 (2006) 010404 [quant-ph/0503219] [INSPIRE].
[46] T. Barthel, M.-C. Chung and U. Schollwock, Entanglement scaling in critical two dimensional fermionic and bosonic systems, Phys. Rev.A 74 (2006) 022329 [cond-mat/0602077].
[47] W. Li, L. Ding, R. Yu, T. Roscilde and S. Haas, Scaling Behavior of Entanglement in Two- and Three-Dimensional Free Fermions, Phys. Rev.B 74 (2006) 073103 [quant-ph/0602094].
[48] Calabrese, P.; Mintchev, M.; Vicari, E., Entanglement entropies in free fermion gases for arbitrary dimension, Europhys. Lett., 97, 20009, (2012) · doi:10.1209/0295-5075/97/20009
[49] Ogawa, N.; Takayanagi, T.; Ugajin, T., Holographic Fermi surfaces and entanglement entropy, JHEP, 01, 125, (2012) · Zbl 1306.81128 · doi:10.1007/JHEP01(2012)125
[50] Huijse, L.; Sachdev, S.; Swingle, B., Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev., B 85, 035121, (2012) · doi:10.1103/PhysRevB.85.035121
[51] Takayanagi, T., Strange metals and holographic entanglement entropy, Int. J. Mod. Phys., A 28, 1340004, (2013) · doi:10.1142/S0217751X13400046
[52] Alishahiha, M.; Astaneh, AF; Mohammadi Mozaffar, MR, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev., D 90, 046004, (2014)
[53] Fonda, P.; Franti, L.; Keränen, V.; Keski-Vakkuri, E.; Thorlacius, L.; Tonni, E., Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP, 08, 051, (2014) · doi:10.1007/JHEP08(2014)051
[54] Hosseini, SM; Véliz-Osorio, Á, Entanglement and mutual information in two-dimensional nonrelativistic field theories, Phys. Rev., D 93, 026010, (2016)
[55] L. Basanisi and S. Chakrabortty, Holographic Entanglement Entropy in NMG, JHEP09 (2016) 144 [arXiv:1606.01920] [INSPIRE]. · Zbl 1390.83056
[56] Y. Ling, Z.-Y. Xian and Z. Zhou, Holographic Shear Viscosity in Hyperscaling Violating Theories without Translational Invariance, arXiv:1605.03879 [INSPIRE]. · Zbl 1390.83163
[57] Headrick, M., Entanglement renyi entropies in holographic theories, Phys. Rev., D 82, 126010, (2010)
[58] Mohammadi Mozaffar, MR; Mollabashi, A.; Omidi, F., Holographic mutual information for singular surfaces, JHEP, 12, 082, (2015) · Zbl 1388.81087 · doi:10.1007/JHEP12(2015)082
[59] Hayden, P.; Headrick, M.; Maloney, A., Holographic mutual information is monogamous, Phys. Rev., D 87, 046003, (2013)
[60] Alishahiha, M.; Mohammadi Mozaffar, MR; Tanhayi, MR, On the time evolution of holographic n-partite information, JHEP, 09, 165, (2015) · Zbl 1388.83156 · doi:10.1007/JHEP09(2015)165
[61] Tanhayi, MR, Thermalization of mutual information in hyperscaling violating backgrounds, JHEP, 03, 202, (2016) · Zbl 1388.83324 · doi:10.1007/JHEP03(2016)202
[62] Mirabi, S.; Tanhayi, MR; Vazirian, R., On the monogamy of holographic n-partite information, Phys. Rev., D 93, 104049, (2016)
[63] Braunstein, SL; Caves, CM, Statistical distance and the geometry of quantum states, Phys. Rev. Lett., 72, 3439, (1994) · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[64] Gu, S-J, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys., B 24, 4371, (2010) · Zbl 1213.82031 · doi:10.1142/S0217979210056335
[65] Miyaji, M.; Numasawa, T.; Shiba, N.; Takayanagi, T.; Watanabe, K., Distance between quantum states and gauge-gravity duality, Phys. Rev. Lett., 115, 261602, (2015) · doi:10.1103/PhysRevLett.115.261602
[66] Bak, D., Information metric and Euclidean Janus correspondence, Phys. Lett., B 756, 200, (2016) · Zbl 1400.81167 · doi:10.1016/j.physletb.2016.03.012
[67] Alishahiha, M., Holographic complexity, Phys. Rev., D 92, 126009, (2015)
[68] Nishioka, T.; Takayanagi, T., AdS bubbles, entropy and closed string tachyons, JHEP, 01, 090, (2007) · doi:10.1088/1126-6708/2007/01/090
[69] Klebanov, IR; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys., B 796, 274, (2008) · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
[70] Nishioka, T.; Ryu, S.; Takayanagi, T., Holographic entanglement entropy: an overview, J. Phys., A 42, 504008, (2009) · Zbl 1179.81138
[71] Maldacena, JM, Wilson loops in large-N field theories, Phys. Rev. Lett., 80, 4859, (1998) · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[72] Giataganas, D., Probing strongly coupled anisotropic plasma, JHEP, 07, 031, (2012) · doi:10.1007/JHEP07(2012)031
[73] Blanco, DD; Casini, H.; Hung, L-Y; Myers, RC, Relative entropy and holography, JHEP, 08, 060, (2013) · Zbl 1342.83128 · doi:10.1007/JHEP08(2013)060
[74] Bhattacharya, J.; Nozaki, M.; Takayanagi, T.; Ugajin, T., Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett., 110, 091602, (2013) · doi:10.1103/PhysRevLett.110.091602
[75] Wong, G.; Klich, I.; Pando Zayas, LA; Vaman, D., Entanglement temperature and entanglement entropy of excited states, JHEP, 12, 020, (2013) · doi:10.1007/JHEP12(2013)020
[76] D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP08 (2013) 102 [arXiv:1305.2728] [INSPIRE]. · Zbl 1342.83093
[77] Lashkari, N.; McDermott, MB; Raamsdonk, M., Gravitational dynamics from entanglement ‘thermodynamics’, JHEP, 04, 195, (2014) · doi:10.1007/JHEP04(2014)195
[78] Nogueira, F., Extremal surfaces in asymptotically AdS charged boson stars backgrounds, Phys. Rev., D 87, 106006, (2013)
[79] Gentle, SA; Rangamani, M., Holographic entanglement and causal information in coherent states, JHEP, 01, 120, (2014) · doi:10.1007/JHEP01(2014)120
[80] Refael, G.; Moore, JE, Entanglement entropy of random quantum critical points in one dimension, Phys. Rev. Lett., 93, 260602, (2004) · doi:10.1103/PhysRevLett.93.260602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.