×

Disformal invariance of continuous media with linear equation of state. (English) Zbl 1515.83212

Summary: We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form \(p = w\rho\) is invariant under a 1-parameter family of continuous disformal transformations. In the special case of \(w=1/3\) (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] J.D. Bekenstein, 1993 The Relation between physical and gravitational geometry, Phys. Rev. D 48 3641 [gr-qc/9211017] · doi:10.1103/PhysRevD.48.3641
[2] J.D. Bekenstein, 2004 Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70 083509 [Erratum ibid D 71 (2005) 069901] [astro-ph/0403694] · doi:10.1103/PhysRevD.70.083509
[3] M. Milgrom, 2009 Bimetric MOND gravity, Phys. Rev. D 80 123536 [0912.0790] · doi:10.1103/PhysRevD.80.123536
[4] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, 2012 Modified Gravity and Cosmology, Phys. Rept.513 1 [1106.2476] · doi:10.1016/j.physrep.2012.01.001
[5] J. Sakstein, 2014 Disformal Theories of Gravity: From the Solar System to Cosmology J. Cosmol. Astropart. Phys.2014 12 012 [1409.1734]
[6] N. Kaloper, 2004 Disformal inflation, Phys. Lett. B 583 1 [hep-ph/0312002] · doi:10.1016/j.physletb.2004.01.005
[7] D. Bettoni and S. Liberati, 2013 Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action, Phys. Rev. D 88 084020 [1306.6724] · doi:10.1103/PhysRevD.88.084020
[8] N. Deruelle and J. Rua, 2014 Disformal Transformations, Veiled General Relativity and Mimetic Gravity J. Cosmol. Astropart. Phys.2014 09 002 [1407.0825]
[9] F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, 2015 The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier J. Cosmol. Astropart. Phys.2015 09 051 [1506.08575]
[10] M. Zumalacárregui and J. García-Bellido, 2014 Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 064046 [1308.4685] · doi:10.1103/PhysRevD.89.064046
[11] F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, 2016 Cosmological perturbations in mimetic Horndeski gravity J. Cosmol. Astropart. Phys.2016 04 042 [1512.09374]
[12] A.H. Chamseddine and V. Mukhanov, 2013 Mimetic Dark Matter J. High Energy Phys. JHEP11(2013)135 [1308.5410] · doi:10.1007/JHEP11(2013)135
[13] A.H. Chamseddine, V. Mukhanov and A. Vikman, 2014 Cosmology with Mimetic Matter J. Cosmol. Astropart. Phys.2014 06 017 [1403.3961]
[14] K. Hammer and A. Vikman, Many Faces of Mimetic Gravity, [1512.09118]
[15] R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini, 2016 Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes, Class. Quant. Grav.33 125005 [1510.02284] · Zbl 1342.83040 · doi:10.1088/0264-9381/33/12/125005
[16] G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini, 2016 Covariant Hořava-like and mimetic Horndeski gravity: cosmological solutions and perturbations, Class. Quant. Grav.33 225014 [1601.00102] · Zbl 1351.83043 · doi:10.1088/0264-9381/33/22/225014
[17] S. Ramazanov, F. Arroja, M. Celoria, S. Matarrese and L. Pilo, 2016 Living with ghosts in Hořava-Lifshitz gravity J. High Energy Phys. JHEP06(2016)020 [1601.05405] · Zbl 1388.83604 · doi:10.1007/JHEP06(2016)020
[18] P. Creminelli, J. Gleyzes, J. Noreña and F. Vernizzi, 2014 Resilience of the standard predictions for primordial tensor modes, Phys. Rev. Lett.113 231301 [1407.8439] · doi:10.1103/PhysRevLett.113.231301
[19] F.T. Falciano and E. Goulart, 2012 A new symmetry of the relativistic wave equation, Class. Quant. Grav.29 085011 [1112.1341] · Zbl 1241.83008 · doi:10.1088/0264-9381/29/8/085011
[20] E. Goulart and F.T. Falciano, 2013 Disformal invariance of Maxwell’s field equations, Class. Quant. Grav.30 155020 [1303.4350] · Zbl 1273.83042 · doi:10.1088/0264-9381/30/15/155020
[21] E. Bittencourt, I.P. Lobo and G.G. Carvalho, 2015 On the disformal invariance of the Dirac equation, Class. Quant. Grav.32 185016 [1505.03415] · Zbl 1327.83187 · doi:10.1088/0264-9381/32/18/185016
[22] R. Slobodeanu, 2011 Perfect fluids from high power σ-models, Int. J. Geom. Meth. Mod. Phys.08 1763 [1006.1133] · Zbl 1244.53025 · doi:10.1142/S0219887811005919
[23] A.H. Taub, 1954 General Relativistic Variational Principle for Perfect Fluids, Phys. Rev.94 1468 · doi:10.1103/PhysRev.94.1468
[24] B.F. Schutz, 1970 Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle, Phys. Rev. D 2 2762 · Zbl 1227.83022 · doi:10.1103/PhysRevD.2.2762
[25] B.F. Schutz and R. Sorkin, 1977 Variational aspects of relativistic field theories, with application to perfect fluids, Annals Phys.107 1 · Zbl 0363.49015 · doi:10.1016/0003-4916(77)90200-7
[26] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, 2006 Null energy condition and superluminal propagation J. High Energy Phys. JHEP03(2006)025 [hep-th/0512260] · Zbl 1226.83090
[27] S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, 2012 Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 085029 [1107.0731] · doi:10.1103/PhysRevD.85.085029
[28] A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids, [1108.2513]
[29] G. Ballesteros and B. Bellazzini, 2013 Effective perfect fluids in cosmology J. Cosmol. Astropart. Phys.2013 04 001 [1210.1561]
[30] L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, 2015 Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett.114 091601 [1403.6509] · doi:10.1103/PhysRevLett.114.091601
[31] B. Gripaios and D. Sutherland, 2015 Quantum Field Theory of Fluids, Phys. Rev. Lett.114 071601 [1406.4422] · doi:10.1103/PhysRevLett.114.071601
[32] B. Carter, 1989 Covariant Theory of Conductivity in Ideal Fluid or Solid Media Lect. Notes Math.1385 1 · Zbl 0694.76052 · doi:10.1007/BFb0084028
[33] G.L. Comer and D. Langlois, 1993 Hamiltonian formulation for multi-constituent relativistic perfect fluids, Class. Quant. Grav.10 2317 · Zbl 0787.76096 · doi:10.1088/0264-9381/10/11/014
[34] G.L. Comer and D. Langlois, 1994 Hamiltonian formulation for relativistic superfluids, Class. Quant. Grav.11 709 · doi:10.1088/0264-9381/11/3/021
[35] N. Andersson and G.L. Comer, 2007 Relativistic fluid dynamics: Physics for many different scales, Living Rev. Rel.10 1 [gr-qc/0605010] · Zbl 1255.85001 · doi:10.12942/lrr-2007-1
[36] P. Kovtun, 2012 Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 473001 [1205.5040] · Zbl 1348.83039 · doi:10.1088/1751-8113/45/47/473001
[37] L.D. Landau and E.M. Lifshits, 1959 Fluid Mechanics, Pergamon Press
[38] G. Ballesteros, D. Comelli and L. Pilo, 2016 Massive and modified gravity as self-gravitating media, Phys. Rev. D 94 124023 [1603.02956] · doi:10.1103/PhysRevD.94.124023
[39] G. Ballesteros, D. Comelli and L. Pilo, 2016 Thermodynamics of perfect fluids from scalar field theory, Phys. Rev. D 94 025034 [1605.05304] · doi:10.1103/PhysRevD.94.025034
[40] S. Matarrese, 1985 On the Classical and Quantum Irrotational Motions of a Relativistic Perfect Fluid. 1. Classical Theory, Proc. Roy. Soc. Lond. A 401 53 · Zbl 0575.76128 · doi:10.1098/rspa.1985.0087
[41] J.D. Brown and K.V. Kuchar, 1995 Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51 5600 [gr-qc/9409001] · doi:10.1103/PhysRevD.51.5600
[42] S. Endlich, A. Nicolis and J. Wang, 2013 Solid Inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[43] L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, 2016 Solid Holography and Massive Gravity J. High Energy Phys. JHEP02(2016)114 [1510.09089] · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[44] L. Alberte, M. Baggioli and O. Pujolàs, 2016 Viscosity bound violation in holographic solids and the viscoelastic response J. High Energy Phys. JHEP07(2016)074 [1601.03384] · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.