×

A robust and scalable unfitted adaptive finite element framework for nonlinear solid mechanics. (English) Zbl 1507.74446

Summary: In this work, we bridge standard Adaptive Mesh Refinement and coarsening (AMR) on scalable octree background meshes and robust unfitted Finite Element (FE) formulations for the automatic and efficient solution of large-scale nonlinear solid mechanics problems posed on complex geometries, as an alternative to standard body-fitted formulations, unstructured mesh generation and graph partitioning strategies. We pay special attention to those aspects requiring a specialized treatment in the extension of the unfitted \(h\)-adaptive Aggregated Finite Element Method (\(h\)-AgFEM) on parallel tree-based adaptive meshes, recently developed for linear scalar elliptic problems, to handle nonlinear problems in solid mechanics. In order to accurately and efficiently capture localized phenomena that frequently occur in nonlinear solid mechanics problems, we perform pseudo time-stepping in combination with \(h\)-adaptive dynamic mesh refinement and re-balancing driven by a-posteriori error estimators. The method is implemented considering both irreducible and mixed (u/p) formulations and thus it is able to robustly face problems involving incompressible materials. In the numerical experiments, both formulations are used to model the inelastic behavior of a wide range of compressible and incompressible materials. First, a selected set of benchmarks is reproduced as a verification step. Second, a set of experiments is presented with problems involving complex geometries. Among them, we model a cantilever beam problem with spherical hollows distributed in a simple cubic (SC) array. This test involves a discrete domain with up to 11.7M Degrees Of Freedom (DOFs) solved in less than two hours on 3072 cores of a parallel supercomputer.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

References:

[1] Echeta, I.; Feng, X.; Dutton, B.; Leach, R.; Piano, S., Review of defects in lattice structures manufactured by powder bed fusion, Int. J. Adv. Manuf. Technol., 106, 5-6, 2649-2668 (2020)
[2] Plocher, J.; Panesar, A., Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, (Materials and Design, Vol. 183 (2019), Elsevier Ltd), Article 108164 pp.
[3] Neiva, E.; Badia, S.; Martin, A. F.; Chiumenti, M., A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing, Internat. J. Numer. Methods Engrg., 119, 11, 1098-1125 (2019) · Zbl 07863657
[4] Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M., Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software, 38, 2 (2012)
[5] Badia, S.; Martín, A. F.; Neiva, E.; Verdugo, F., A generic finite element framework on parallel tree-based adaptive meshes, SIAM J. Sci. Comput., 42, 6, C436-C468 (2020) · Zbl 07328656
[6] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[7] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[8] Badia, S.; Verdugo, F.; Martin, A. F., The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 336, 533-553 (2018) · Zbl 1440.65175
[9] Badia, S.; Martin, A. F.; Verdugo, F., Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem, SIAM J. Sci. Comput., 40, 6, B1541-B1576 (2018) · Zbl 1412.65184
[10] Badia, S.; Martín, A. F.; Neiva, E.; Verdugo, F., The aggregated unfitted finite element method on parallel tree-based adaptive meshes, SIAM J. Sci. Comput., 43, 3, C203-C234 (2021) · Zbl 1472.65141
[11] Verdugo, F.; Martin, A. F.; Badia, S., Distributed-memory parallelization of the aggregated unfitted finite element method, Comput. Methods Appl. Mech. Engrg., 357, Article 112583 pp. (2019) · Zbl 1442.65280
[12] Neiva, E.; Badia, S., Robust and scalable h-adaptive aggregated unfitted finite elements for interface elliptic problems, Comput. Methods Appl. Mech. Engrg., 380, Article 113769 pp. (2021) · Zbl 1506.65221
[13] Johnson, C.; Hansbo, P., Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg., 101, 1, 143-181 (1992) · Zbl 0778.73071
[14] Rannacher, R.; Suttmeier, F.-T., A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 176, 1, 333-361 (1999) · Zbl 0954.74070
[15] Frohne, J.; Heister, T.; Bangerth, W., Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems, Internat. J. Numer. Methods Engrg., 105, 6, 416-439 (2016) · Zbl 07868650
[16] Ghorashi, S. S.; Rabczuk, T., Goal-oriented error estimation and mesh adaptivity in 3d elastoplasticity problems, Int. J. Fract., 203, 1, 3-19 (2017)
[17] Rüberg, T.; Cirak, F.; García Aznar, J., An unstructured immersed finite element method for nonlinear solid mechanics, Adv. Model. Simul. Eng. Sci., 3, 1, 22 (2016)
[18] Rüberg, T.; Aznar, J. G., Numerical simulation of solid deformation driven by creeping flow using an immersed finite element method, Adv. Model. Simul. Eng. Sci., 3, 1, 9 (2016)
[19] Schillinger, D.; Cai, Q.; Mundani, R.-P.; Rank, E., A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models, (Bader, M.; Bungartz, H.-J.; Weinzierl, T., Advanced Computing (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 1-23
[20] Duster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 3768-3782 (2008) · Zbl 1194.74517
[21] Hansbo, P.; Larson, M. G.; Larsson, K., Cut finite element methods for linear elasticity problems, (Bordas, S. P.A.; Burman, E.; Larson, M. G.; Olshanskii, M. A., Geometrically Unfitted Finite Element Methods and Applications (2017), Springer International Publishing: Springer International Publishing Cham), 25-63 · Zbl 1390.74180
[22] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Karpeyev, D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users ManualTechnical Report ANL-95/11 - Revision 3.13 (2020), Argonne National Laboratory
[23] Simo, J.; Hughes, T., Computational Inelasticity (1998), Springer-Verlag · Zbl 0934.74003
[24] de Souza Neto D. Peric D. R. J. Owen, E. A., Computational Methods for Plasticity: Theory and Applications (2008), John Wiley & Sons, Ltd Eds.
[25] Johnson, C., On plasticity with hardening, J. Math. Anal. Appl., 62, 2, 325-336 (1978) · Zbl 0373.73049
[26] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 4, 328-341 (2012) · Zbl 1316.65099
[27] Müller, B.; Krämer-Eis, S.; Kummer, F.; Oberlack, M., A high-order discontinuous Galerkin method for compressible flows with immersed boundaries, Internat. J. Numer. Methods Engrg., 110, 1, 3-30 (2017) · Zbl 1380.65384
[28] Burstedde, C.; Wilcox, L. C.; Ghattas, O., P4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[29] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56, 6, 967-981 (2015) · Zbl 1336.65020
[30] Badia, S.; Verdugo, F., Robust and scalable domain decomposition solvers for unfitted finite element methods, J. Comput. Appl. Math., 344, 740-759 (2018) · Zbl 1462.65216
[31] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, 530 (1978), North-Holland Pub. Co. · Zbl 0383.65058
[32] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996), Society for Industrial and Applied Mathematics · Zbl 0847.65038
[33] Babuska, I.; Rheinboldt, W. C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 10, 1597-1615 (1978) · Zbl 0396.65068
[34] Babuska, I., A-posteriori error estimation for the finite element method, (Wunderlich, W.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 3-10 · Zbl 0479.73060
[35] Kelly, D. W.; De S. R. Gago, J. P.; Zienkiewicz, O. C.; Babuska, I., A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis, Internat. J. Numer. Methods Engrg., 19, 11, 1593-1619 (1983) · Zbl 0534.65068
[36] Grätsch, T.; Bathe, K.-J., A posteriori error estimation techniques in practical finite element analysis, Comput. Struct., 83, 4, 235-265 (2005)
[37] Elguedj, T.; Bazilevs, Y.; Calo, V.; Hughes, T., B-bar an F-bar projection methods for nearly incompressible linear and non linear elasticity and plasticity using higher order NURBS element, Comput. Methods Appl. Mech. Engrg., 197 (2008) · Zbl 1194.74518
[38] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticity, Internat. J. Numer. Methods Engrg., 22, 3, 649-670 (1986) · Zbl 0585.73059
[39] Tao, W.; Leu, M. C., Design of lattice structure for additive manufacturing, (2016 International Symposium on Flexible Automation (ISFA) (2016), IEEE), 325-332
[40] Marenostrum-IV Web site (2020), https://www.bsc.es/marenostrum/marenostrum. Accessed: 2020-06-22
[41] NCI-Gadi Web site (2020), https://nci.org.au/our-systems/hpc-systems. Accessed: 2020-06-22
[42] Badia, S.; Martin, A. F.; Principe, J., FEMPAR: An object-oriented parallel finite element framework, Arch. Comput. Methods Eng., 25, 2, 195-271 (2018) · Zbl 1392.65005
[43] Badia, S.; Martin, A. F., A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0, Comput. Phys. Comm., 248, Article 107059 pp. (2020) · Zbl 07678485
[44] Barber, C.; Dobkin, D.; Huhdanpaa, H., The quickhull algorithm for convex hulls, ACM Trans. Math. Softw. (1996) · Zbl 0884.65145
[45] Hill, R., The Mathematical Theory of Plasticity (1950), Clarendon Press · Zbl 0041.10802
[46] Gao, X.-L., Elasto-plastic analysis of an internally pressurized thick-walled cylinder using a strain gradient plasticity theory, Int. J. Solids Struct., 40, 23, 6445-6455 (2003) · Zbl 1079.74008
[47] Kittel, C., Introduction to Solid State Physics (2004), Wiley · Zbl 1140.82040
[48] Badia, S.; Hampton, J.; Principe, J., Embedded multilevel Monte Carlo for uncertainty quantification in random domains, Int. J. Uncertain. Quantif., 119-142 (2021) · Zbl 1498.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.