×

The aggregated unfitted finite element method on parallel tree-based adaptive meshes. (English) Zbl 1472.65141

In this paper the authors built a bridge between the parallel adaptive tree-based meshing and the robust and scalable aggregated finite element method (AgFEM) as an unfitted FEM. The mathematical analysis of AgFEM has been detailed in a previous paper of authors and in this paper they are mainly concerned with the optimal error-driven \(h\)-adaptivity of this method in practical large-scale FEM applications. Actually a discrete extension operator from well-posed to ill-posed DOFs is constructed as AgFEM is based on it. Some numerical experiments concerning a non homogeneous Dirichlet boundary value problem for 2D and 3D Poisson equation on some non trivial domains are carried out. From mathematical point of view the paper contains two useful appendices. In the first one the authors built up the AgFEM space and in the second they prove that both the condition number of the mass matrix associated to the AgFEM space and of the linear system involved are bounded.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
65Y20 Complexity and performance of numerical algorithms

Software:

p4est; CutFEM; FEMPAR; PETSc

References:

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000. · Zbl 1008.65076
[2] S. Badia, A. F. Martín, E. Neiva, and F. Verdugo, A generic finite element framework on parallel tree-based adaptive meshes, SIAM J. Sci. Comput., 42 (2020), pp. C436-C468, https://doi.org/10.1137/20M1328786. · Zbl 07328656
[3] S. Badia, A. F. Martín, and J. Principe, FEMPAR: An object-oriented parallel finite element framework, Arch. Comput. Methods Eng., 25 (2018), pp. 195-271, https://doi.org/10.1007/s11831-017-9244-1. · Zbl 1392.65005
[4] S. Badia, A. F. Martín, and F. Verdugo, Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem, SIAM J. Sci. Comput., 40 (2018), pp. B1541-B1576, https://doi.org/10.1137/18M1185624. · Zbl 1412.65184
[5] S. Badia and F. Verdugo, Robust and scalable domain decomposition solvers for unfitted finite element methods, J. Comput. Appl. Math., 344 (2018), pp. 740-759, https://doi.org/10.1016/j.cam.2017.09.034. · Zbl 1462.65216
[6] S. Badia, F. Verdugo, and A. F. Martín, The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 336 (2018), pp. 533-553, https://doi.org/10.1016/j.cma.2018.03.022. · Zbl 1440.65175
[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, 2019, http://www.mcs.anl.gov/petsc.
[8] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software, 38 (2012), pp. 14:1-14:28, https://doi.org/10.1145/2049673.2049678. · Zbl 1365.65247
[9] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104 (2015), pp. 472-501, https://doi.org/10.1002/nme.4823. · Zbl 1352.65604
[10] E. Burman, D. Elfverson, P. Hansbo, M. G. Larson, and K. Larsson, Shape optimization using the cut finite element method, Comput. Methods Appl. Mech. Engrg., 328 (2018), pp. 242-261, https://doi.org/10.1016/j.cma.2017.09.005. · Zbl 1439.74316
[11] E. Burman, C. He, and M. G. Larson, A posteriori error estimates with boundary correction for a cut finite element method, IMA J. Numer. Anal., in press, https://doi.org/10.1093/imanum/draa085.
[12] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, Eh Tan, T. Tu, L. C. Wilcox, and S. Zhong, Scalable adaptive mantle convection simulation on petascale supercomputers, in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, IEEE, 2008, https://doi.org/10.1109/SC.2008.5214248.
[13] C. Burstedde and J. Holke, A tetrahedral space-filling curve for nonconforming adaptive meshes, SIAM J. Sci. Comput., 38 (2016), pp. C471-C503, https://doi.org/10.1137/15M1040049. · Zbl 1348.65173
[14] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103-1133, https://doi.org/10.1137/100791634. · Zbl 1230.65106
[15] J. Cervený, V. Dobrev, and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), pp. C367-C392, https://doi.org/10.1137/18M1193992. · Zbl 1471.65210
[16] F. de Prenter, C. V. Verhoosel, G. J. van Zwieten, and E. H. van Brummelen, Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg., 316 (2017), pp. 297-327, https://doi.org/10.1016/j.cma.2016.07.006. · Zbl 1439.65137
[17] L. Demkowicz, Computing with hp-Adaptive Finite Elements: Volume 1. One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL, 2006.
[18] P. Díez and A. Huerta, A unified approach to remeshing strategies for finite element h-adaptivity, Comput. Methods Appl. Mech. Engrg., 176 (1999), pp. 215-229, https://doi.org/10.1016/S0045-7825(98)00338-7. · Zbl 0942.74071
[19] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2014, https://doi.org/10.1093/acprof:oso/9780199678792.001.0001. · Zbl 1304.76002
[20] J. Holke, Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with General Element Types, preprint, 2018, https://arxiv.org/abs/1803.04970.
[21] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput., 37 (2015), pp. C497-C531, https://doi.org/10.1137/140970963. · Zbl 1323.65105
[22] J. N. Jomo, F. D. Prenter, M. Elhaddad, D. D. Angella, C. V. Verhoosel, S. Kollmannsberger, J. S. Kirschke, E. H. V. Brummelen, and E. Rank, Robust and parallel scalable iterative solutions for large-scale finite cell analyses, Finite Elem. Anal. Des., 163 (2019), pp. 14-30, https://doi.org/10.1016/j.finel.2019.01.009.
[23] L.-Y. Li and P. Bettess, Notes on mesh optimal criteria in adaptive finite element computations, Commun. Numer. Methods Engrg., 11 (1995), pp. 911-915, https://doi.org/10.1002/cnm.1640111105. · Zbl 0833.73058
[24] L.-Y. Li, P. Bettess, J. Bull, T. Bond, and I. Applegarth, Theoretical formulations for adaptive finite element computations, Commun. Numer. Methods Engrg., 11 (1995), pp. 857-868, https://doi.org/10.1002/cnm.1640111010. · Zbl 0848.65078
[25] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes, A Nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci., 10 (2015), pp. 97-120, https://doi.org/10.2140/camcos.2015.10.97. · Zbl 1326.74122
[26] E. Neiva, S. Badia, A. F. Martin, and M. Chiumenti, A scalable parallel finite element framework for growing geometries. application to metal additive manufacturing, Internat. J. Numer. Methods Engrg., 119 (2019), pp. 1098-1125, https://doi.org/10.1002/nme.6085. · Zbl 07863657
[27] L. Nguyen, S. Stoter, T. Baum, J. Kirschke, M. Ruess, Z. Yosibash, and D. Schillinger, Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2880, https://doi.org/10.1002/cnm.2880.
[28] M. Olm, S. Badia, and A. F. Martín, On a general implementation of h- and p-adaptive curl-conforming finite elements, Adv. Eng. Softw., 132 (2019), pp. 74-91, https://doi.org/10.1016/j.advengsoft.2019.03.006.
[29] E. On͂ate and G. Bugeda, A study of mesh optimality criteria in adaptive finite element analysis, Engrg. Comput., 10 (1993), pp. 307-321, https://doi.org/10.1108/eb023910.
[30] W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive finite element mesh refinements, ACM Trans. Math. Software, 6 (1980), pp. 166-187, https://doi.org/10.1145/355887.355891. · Zbl 0437.65081
[31] J. Rudi, O. Ghattas, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen, C. Bekas, and A. Curioni, An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in earth’s mantle, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, New York, 2015, ACM Press, https://doi.org/10.1145/2807591.2807675.
[32] H. Sauerland and T. P. Fries, The extended finite element method for two-phase and free-surface flows: A systematic study, J. Comput. Phys., 230 (2011), pp. 3369-3390, https://doi.org/10.1016/j.jcp.2011.01.033. · Zbl 1316.76050
[33] D. Schillinger and M. Ruess, The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22 (2015), pp. 391-455, https://doi.org/10.1007/s11831-014-9115-y. · Zbl 1348.65056
[34] M. S. Shephard, Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 2107-2112, https://doi.org/10.1002/nme.1620201112. · Zbl 0547.73069
[35] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6183-6200, https://doi.org/10.1016/S0045-7825(01)00215-8. · Zbl 1029.74049
[36] N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method forthree-dimensional crack modelling, Internat. J. Numer. Methods Engrg., 48 (2000), pp. 1549-1570, https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A. · Zbl 0963.74067
[37] F. Verdugo, A. F. Martín, and S. Badia, Distributed-memory parallelization of the aggregated unfitted finite element method, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112583, https://doi.org/10.1016/j.cma.2019.112583. · Zbl 1442.65280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.