×

The super-Stückelberg procedure and dS in pure supergravity. (English) Zbl 1472.83109

Summary: Understanding de Sitter space in supergravity – and string theory – has led to an intense amount of work for more than two decades, largely motivated by the discovery of the accelerated expansion of the Universe in 1998. In this paper, we consider a non-trivial generalization of unimodular gravity to minimal \(\mathcal{N} = 1\) supergravity, which allows for de Sitter solutions without the need of introducing any matter. We formulate a superspace version of the Stückelberg procedure, which restores diffeomorphism and local supersymmetry invariance. This introduces the goldstino associated with spontaneous breaking of supersymmetry in a natural way. The cosmological constant and gravitino mass are related to the vacuum expectation value of the components of a Lagrange multiplier imposing a super-unimodularity condition.

MSC:

83E50 Supergravity

References:

[1] Supernova Cosmology Project Collaboration, Perlmutter S et al. 1998 Discovery of a supernova explosion at half the age of the Universe and its cosmological implications. Nature 391, 51-54. (doi:10.1038/34124) · doi:10.1038/34124
[2] Supernova Search Team Collaboration, Riess AG et al. 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009-1038. (doi:10.1086/300499) · doi:10.1086/300499
[3] Zeldovich YB. 1967 Cosmological constant and elementary particles. JETP Lett. 6, 316. [Pisma Zh. Eksp. Teor. Fiz. 6,883 (1967)].
[4] Weinberg S. 1989 The cosmological constant problem. Rev. Mod. Phys. 61, 1-23. [,569(1988)] (doi:10.1103/RevModPhys.61.1) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[5] Polchinski J. 2006 The cosmological constant and the string landscape. In The Quantum Structure of Space and Time: Proc. of the 23rd Solvay Conf. on Physics. Brussels, Belgium. 1-3 December 2005, pp. 216-236. (http://arxiv.org/abs/hep-th/0603249 [hep-th]).
[6] Burgess CP. 2015 The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. In Proc., 100th Les Houches Summer School: Post-Planck Cosmology: Les Houches, France, 8 July-2 August, 2013, pp. 149-197. (http://arxiv.org/abs/1309.4133 [hep-th]). · Zbl 1326.83006
[7] Martin J. 2012 Everything you always wanted to know about the cosmological constant problem (But Were Afraid To Ask). C.R. Phys. 13, 566-665. (doi:10.1016/j.crhy.2012.04.008) · doi:10.1016/j.crhy.2012.04.008
[8] Padilla A. Lectures on the cosmological constant problem. (http://arxiv.org/abs/1502.05296 [hep-th]). · Zbl 1409.83239
[9] Weinberg S. 1987 Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607. (doi:10.1103/PhysRevLett.59.2607) · doi:10.1103/PhysRevLett.59.2607
[10] Davies PCW, Unwin SD. 1981 Why is the cosmological constant so small?. Proc. R. Soc. Lond. A 377, 147-149.
[11] Barrow JD, Tipler FJ. 1988 The anthropic cosmological principle. Oxford, UK: Oxford University Press.
[12] Kaloper N, Padilla A. 2014 Sequestering the standard model vacuum energy. Phys. Rev. Lett. 112, 091304. (doi:10.1103/PhysRevLett.112.091304) · doi:10.1103/PhysRevLett.112.091304
[13] Kaloper N, Padilla A, Stefanyszyn D, Zahariade G. 2016 Manifestly local theory of vacuum energy sequestering. Phys. Rev. Lett. 116, 051302. (doi:10.1103/PhysRevLett.116.051302) · Zbl 1356.81164 · doi:10.1103/PhysRevLett.116.051302
[14] Kaloper N, Padilla A. 2017 Vacuum energy sequestering and graviton loops. Phys. Rev. Lett. 118, 061303. (doi:10.1103/PhysRevLett.118.061303) · doi:10.1103/PhysRevLett.118.061303
[15] Padilla A. 2019 Monodromy inflation and an emergent mechanism for stabilising the cosmological constant. J. High Energy Phys. 01, 175. (doi:10.1007/JHEP01(2019)175) · Zbl 1409.83239 · doi:10.1007/JHEP01(2019)175
[16] Coltman B, Li Y, Padilla A. 2019 Cosmological consequences of Omnia sequestra. J. Cosmol. Astropart. Phys. 1906, 017. (doi:10.1088/1475-7516/2019/06/017) · Zbl 1486.83070 · doi:10.1088/1475-7516/2019/06/017
[17] El-Menoufi BK, Nagy S, Niedermann F, Padilla A. 2019 Quantum corrections to vacuum energy sequestering (with monodromy). Class. Quant. Grav. 36, 215014. (doi:10.1088/1361-6382/ab46f6) · Zbl 1478.83013 · doi:10.1088/1361-6382/ab46f6
[18] Danielsson UH, Van Riet T. 2018 What if string theory has no de Sitter vacua? Int. J. Mod. Phys. D27, 1830007. (doi:10.1142/S0218271818300070) · Zbl 1433.83002 · doi:10.1142/S0218271818300070
[19] Wess J, Bagger J. 1992 Supersymmetry and supergravity. Princeton, NJ: Princeton University Press. · Zbl 0516.53060
[20] Kachru S, Kallosh R, Linde AD, Trivedi SP. 2003 De Sitter vacua in string theory. Phys. Rev. D68, 046005. (doi:10.1103/PhysRevD.68.046005) · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[21] Bousso R. 2011 The cosmological constant problem, dark energy, and the landscape of string theory. Pontif. Acad. Sci. Scr. Varia 119, 129-151.
[22] Brennan TD, Carta F, Vafa C. 2017 The string landscape, the swampland, and the missing corner. PoS TASI2017, 015.
[23] Palti E. 2019 The Swampland: introduction and review. Fortsch. Phys. 67, 1900037. (doi:10.1002/prop.201900037) · Zbl 1427.81108 · doi:10.1002/prop.201900037
[24] Ferrara S, Kallosh R, Linde A. 2014 Cosmology with nilpotent superfields. J. High Energy Phys. 10, 143. (doi:10.1007/JHEP10(2014)143) · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[25] Kallosh R, Wrase T. 2014 Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS Vacua. J. High Energy Phys. 12, 117. (doi:10.1007/JHEP12(2014)117) · doi:10.1007/JHEP12(2014)117
[26] Bergshoeff EA, Dasgupta K, Kallosh R, Van Proeyen A, Wrase T. 2015 D¯3 and dS. J. High Energy Phys. 05, 058. (doi:10.1007/JHEP05(2015)058) · doi:10.1007/JHEP05(2015)058
[27] Volkov DV, Akulov VP. 1972 Possible universal neutrino interaction. JETP Lett. 16, 438-440. [Pisma Zh. Eksp. Teor. Fiz. 16,621 (1972)]. · Zbl 0983.81112
[28] Volkov D, Akulov V. 1973 Is the neutrino a goldstone particle? Phys. Lett. B 46, 109-110. (doi:10.1016/0370-2693(73)90490-5) · doi:10.1016/0370-2693(73)90490-5
[29] Kallosh R, Quevedo F, Uranga AM. 2015 String theory realizations of the nilpotent goldstino. J. High Energy Phys. 12, 039. (doi:10.1007/JHEP12(2015)039) · Zbl 1388.81556 · doi:10.1007/JHEP12(2015)039
[30] Garcia-Etxebarria I, Quevedo F, Valandro R. 2016 Global string embeddings for the nilpotent goldstino. J. High Energy Phys. 02, 148. (doi:10.1007/JHEP02(2016)148) · Zbl 1388.83804 · doi:10.1007/JHEP02(2016)148
[31] Dasgupta K, Emelin M, McDonough E. 2017 Fermions on the antibrane: higher order interactions and spontaneously broken supersymmetry. Phys. Rev. D95, 026003. (doi:10.1103/PhysRevD.95.026003) · doi:10.1103/PhysRevD.95.026003
[32] Kallosh R, Vercnocke B, Wrase T. 2016 String theory origin of constrained multiplets. J. High Energy Phys. 09, 063. (doi:10.1007/JHEP09(2016)063) · Zbl 1390.83347 · doi:10.1007/JHEP09(2016)063
[33] Aalsma L, van der Schaar JP, Vercnocke B. 2017 Constrained superfields on metastable anti-D3-branes. J. High Energy Phys. 05, 089. (doi:10.1007/JHEP05(2017)089) · Zbl 1380.81258 · doi:10.1007/JHEP05(2017)089
[34] Cribiori N, Farakos F, Tournoy M. 2019 Supersymmetric Born-Infeld actions and new Fayet-Iliopoulos terms. J. High Energy Phys. 03, 050. (doi:10.1007/JHEP03(2019)050) · Zbl 1414.81235 · doi:10.1007/JHEP03(2019)050
[35] Kallosh R, Linde A, McDonough E, Scalisi M. 2019 4D models of de Sitter uplift. Phys. Rev. D99, 046006. (doi:10.1103/PhysRevD.99.046006) · doi:10.1103/PhysRevD.99.046006
[36] Kallosh R, Wrase T. 2019 dS Supergravity from 10d. Fortsch. Phys. 67, 1800071. [Fortsch. Phys. 2018, 1800071 (2018)] (doi:10.1002/prop.201800071) · Zbl 1535.83144 · doi:10.1002/prop.201800071
[37] Kallosh R, Linde A, Roest D, Yamada Y. 2017 D¯3 induced geometric inflation. J. High Energy Phys. 07, 057. (doi:10.1007/JHEP07(2017)057) · Zbl 1380.85017 · doi:10.1007/JHEP07(2017)057
[38] Garcia del Moral MP, Parameswaran S, Quiroz N, Zavala I. 2017 Anti-D3 branes and moduli in non-linear supergravity. J. High Energy Phys. 10, 185. (doi:10.1007/JHEP10(2017)185) · Zbl 1383.83208 · doi:10.1007/JHEP10(2017)185
[39] Vercnocke B, Wrase T. 2016 Constrained superfields from an anti-D3-brane in KKLT. J. High Energy Phys. 08, 132. (doi:10.1007/JHEP08(2016)132) · Zbl 1390.81473 · doi:10.1007/JHEP08(2016)132
[40] Cribiori N, Roupec C, Wrase T, Yamada Y. 2019 Supersymmetric anti-D3-brane action in the Kachru-Kallosh-Linde-Trivedi setup. Phys. Rev. D100, 066001. (doi:10.1103/PhysRevD.100.066001) · doi:10.1103/PhysRevD.100.066001
[41] Antoniadis I, Dudas E, Ferrara S, Sagnotti A. 2014 The Volkov-Akulov-Starobinsky supergravity. Phys. Lett. B733, 32-35. (doi:10.1016/j.physletb.2014.04.015) · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[42] Kallosh R, Linde A. 2015 Inflation and uplifting with nilpotent superfields. J. Cosmol. Astropart. Phys. 1501, 025. (doi:10.1088/1475-7516/2015/01/025) · doi:10.1088/1475-7516/2015/01/025
[43] Dall’Agata G, Zwirner F. 2014 On sgoldstino-less supergravity models of inflation. J. High Energy Phys. 12, 172. (doi:10.1007/JHEP12(2014)172) · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[44] Kahn Y, Roberts DA, Thaler J. 2015 The goldstone and goldstino of supersymmetric inflation. J. High Energy Phys. 10, 001. (doi:10.1007/JHEP10(2015)001) · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[45] Ferrara S, Kallosh R, Thaler J. 2016 Cosmology with orthogonal nilpotent superfields. Phys. Rev. D 93, 043516. (doi:10.1103/PhysRevD.93.043516) · doi:10.1103/PhysRevD.93.043516
[46] Carrasco JJM, Kallosh R, Linde A. 2016 Minimal supergravity inflation. Phys. Rev. D 93, 061301. (doi:10.1103/PhysRevD.93.061301) · doi:10.1103/PhysRevD.93.061301
[47] Dall’Agata G, Farakos F. 2016 Constrained superfields in supergravity. J. High Energy Phys. 02, 101. (doi:10.1007/JHEP02(2016)101) · Zbl 1388.83783 · doi:10.1007/JHEP02(2016)101
[48] Dudas E, Heurtier L, Wieck C, Winkler MW. 2016 UV corrections in sgoldstino-less inflation. Phys. Lett. B759, 121-125. (doi:10.1016/j.physletb.2016.05.072) · Zbl 1367.83094 · doi:10.1016/j.physletb.2016.05.072
[49] Kallosh R, Linde A, Wrase T. 2016 Coupling the inflationary sector to matter. J. High Energy Phys. 04, 027. (doi:10.1007/JHEP09(2016)063) · Zbl 1390.83347 · doi:10.1007/JHEP09(2016)063
[50] McDonough E, Scalisi M. 2016 Inflation from Nilpotent Kähler Corrections. J. Cosmol. Astropart. Phys. 1611, 028. (doi:10.1088/1475-7516/2016/11/028) · doi:10.1088/1475-7516/2016/11/028
[51] Hasegawa F, Mukaida K, Nakayama K, Terada T, Yamada Y. 2017 Gravitino problem in minimal supergravity inflation. Phys. Lett. B767, 392-397. (doi:10.1016/j.physletb.2017.02.030) · doi:10.1016/j.physletb.2017.02.030
[52] Farakos F, Kehagias A, Riotto A. 2018 Liberated N=1 supergravity. J. High Energy Phys. 06, 011. (doi:10.1007/JHEP06(2018)011) · Zbl 1395.83122 · doi:10.1007/JHEP06(2018)011
[53] Dalianis I, Farakos F. 2017 Constrained superfields from inflation to reheating. Phys. Lett. B773, 610-615. (doi:10.1016/j.physletb.2017.09.020) · Zbl 1378.83092 · doi:10.1016/j.physletb.2017.09.020
[54] Hasegawa F, Yamada Y. 2015 de Sitter vacuum from R2 supergravity. Phys. Rev. D92, 105027.
[55] Linde A. 2016 On inflation, cosmological constant, and SUSY breaking. J. Cosmol. Astropart. Phys. 1611, 002. (doi:10.1088/1475-7516/2016/11/002) · doi:10.1088/1475-7516/2016/11/002
[56] Antoniadis I, Dudas E, Ghilencea DM, Tziveloglou P. 2010 Non-linear MSSM. Nucl. Phys. B841, 157-177. (doi:10.1016/j.nuclphysb.2010.08.002) · Zbl 1207.81178 · doi:10.1016/j.nuclphysb.2010.08.002
[57] Farakos F, Kehagias A. 2013 Non-linear single higgs MSSM. Phys. Lett. B719, 95-102. (doi:10.1016/j.physletb.2012.12.040) · Zbl 1370.81208 · doi:10.1016/j.physletb.2012.12.040
[58] Goodsell MD, Tziveloglou P. 2014 Dirac Gauginos in low scale supersymmetry breaking. Nucl. Phys. B 889, 650-675. (doi:10.1016/j.nuclphysb.2014.10.020) · Zbl 1326.81128 · doi:10.1016/j.nuclphysb.2014.10.020
[59] Dudas E, Ferrara S, Kehagias A, Sagnotti A. 2015 Properties of nilpotent supergravity. J. High Energy Phys. 09, 217. (doi:10.1007/JHEP09(2015)217) · Zbl 1388.83793 · doi:10.1007/JHEP09(2015)217
[60] Bergshoeff EA, Freedman DZ, Kallosh R, Van Proeyen A. 2015 Pure de sitter supergravity. Phys. Rev. D 92, 085040. (doi:10.1103/PhysRevD.92.085040) · doi:10.1103/PhysRevD.92.085040
[61] Hasegawa F, Yamada Y. 2015 Component action of nilpotent multiplet coupled to matter in 4 dimensional N=1 supergravity. J. High Energy Phys. 10, 106. (doi:10.1007/JHEP10(2015)106) · Zbl 1388.83818 · doi:10.1007/JHEP10(2015)106
[62] Ferrara S, Porrati M, Sagnotti A. 2015 Scale invariant Volkov-Akulov supergravity. Phys. Lett. B 749, 589-591. (doi:10.1016/j.physletb.2015.08.066) · Zbl 1364.83060 · doi:10.1016/j.physletb.2015.08.066
[63] Antoniadis I, Markou C. 2015 The coupling of non-linear supersymmetry to supergravity. Eur. Phys. J. C 75, 582. (doi:10.1140/epjc/s10052-015-3783-0) · doi:10.1140/epjc/s10052-015-3783-0
[64] Dall’Agata G, Ferrara S, Zwirner F. 2016 Minimal scalar-less matter-coupled supergravity. Phys. Lett. B 752, 263-266. (doi:10.1016/j.physletb.2015.11.066) · doi:10.1016/j.physletb.2015.11.066
[65] Bandos I, Martucci L, Sorokin D, Tonin M. 2016 Brane induced supersymmetry breaking and de Sitter supergravity. J. High Energy Phys. 02, 080. (doi:10.1007/JHEP02(2016)080) · Zbl 1388.83729 · doi:10.1007/JHEP02(2016)080
[66] Farakos F, Kehagias A, Racco D, Riotto A. 2016 Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity. J. High Energy Phys. 06, 120. (doi:10.1007/JHEP06(2016)120) · Zbl 1388.83798 · doi:10.1007/JHEP06(2016)120
[67] Cribiori N, Dall’Agata G, Farakos F, Porrati M. 2017 Minimal constrained supergravity. Phys. Lett. B 764, 228-232. (doi:10.1016/j.physletb.2016.11.040) · Zbl 1369.83098 · doi:10.1016/j.physletb.2016.11.040
[68] Bandos I, Heller M, Kuzenko SM, Martucci L, Sorokin D. 2016 The Goldstino brane, the constrained superfields and matter in N=1 supergravity. J. High Energy Phys. 11, 109. (doi:10.1007/JHEP11(2016)109) · Zbl 1390.83370 · doi:10.1007/JHEP11(2016)109
[69] Lindstrom U, Rocek M. 1979 Constrained local superfields. Phys. Rev. D 19, 2300-2303. (doi:10.1103/PhysRevD.19.2300) · doi:10.1103/PhysRevD.19.2300
[70] Ferrara S, Kallosh R, Van Proeyen A, Wrase T. 2016 Linear versus non-linear supersymmetry, in general. J. High Energy Phys. 04, 065. (doi:10.1007/JHEP05(2016)065) · Zbl 1388.81038 · doi:10.1007/JHEP05(2016)065
[71] Farakos F. 2016 Constrained superfields and applications. PoS CORFU2016 (2017) 090. (http://arxiv.org/abs/1704.08569 [hep-th]). · Zbl 1388.83783
[72] van der Bij JJ, van Dam H, Ng YJ. 1982 The exchange of massless spin two particles. Physica A 116, 307-320. (doi:10.1016/0378-4371(82)90247-3) · doi:10.1016/0378-4371(82)90247-3
[73] Buchmuller W, Dragon N. 1988 Einstein gravity from restricted coordinate invariance. Phys. Lett. B 207, 292-294. (doi:10.1016/0370-2693(88)90577-1) · doi:10.1016/0370-2693(88)90577-1
[74] Buchmuller W, Dragon N. 1989 Gauge fixing and the cosmological constant. Phys. Lett. B 223, 313-317. (doi:10.1016/0370-2693(89)91608-0) · doi:10.1016/0370-2693(89)91608-0
[75] Henneaux M, Teitelboim C. 1989 The cosmological constant and general covariance. Phys. Lett. B 22, 195-199. (doi:10.1016/0370-2693(89)91251-3) · doi:10.1016/0370-2693(89)91251-3
[76] Kuchar KV. 1991 Does an unspecified cosmological constant solve the problem of time in quantum gravity? Phys. Rev. D 43, 3332-3344. (doi:10.1103/PhysRevD.43.3332) · doi:10.1103/PhysRevD.43.3332
[77] Ellis GFR, van Elst H, Murugan J, Uzan J-P. 2011 On the trace-free Einstein equations as a viable alternative to general relativity. Class. Quant. Grav. 28, 225007. (doi:10.1088/0264-9381/28/22/225007) · Zbl 1230.83077 · doi:10.1088/0264-9381/28/22/225007
[78] Fiol B, Garriga J. 2010 Semiclassical unimodular gravity. J. Cosmol. Astropart. Phys. 1008, 015. (doi:10.1088/1475-7516/2010/08/015) · doi:10.1088/1475-7516/2010/08/015
[79] Padilla A, Saltas ID. 2015 A note on classical and quantum unimodular gravity. Eur. Phys. J. C 75, 561. (doi:10.1140/epjc/s10052-015-3767-0) · doi:10.1140/epjc/s10052-015-3767-0
[80] Stueckelberg ECG. 1938 Interaction energy in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 11, 225-244.
[81] Nishino H, Rajpoot S. 2002 Unimodular supergravity. Phys. Lett. B 528, 259-268. (doi:10.1016/S0370-2693(02)01214-5) · Zbl 0989.83059 · doi:10.1016/S0370-2693(02)01214-5
[82] Volkov DV, Soroka VA. 1973 Higgs effect for goldstone particles with Spin 1/2. JETP Lett. 18, 312-314. [Pisma Zh. Eksp. Teor. Fiz. 18, 529 (1973)]. · Zbl 0983.81111
[83] Volkov DV, Soroka VA. 1974 Gauge fields for symmetry group with spinor parameters. Theor. Math. Phys. 20, 829. [Teor. Mat. Fiz. 20, 291 (1974)]. (doi:10.1007/BF01040161) · doi:10.1007/BF01040161
[84] Buchbinder IL, Kuzenko SM. 1998 Ideas and methods of supersymmetry and supergravity: or a walk through superspace. Boca Raton, FL: CRC Press. · Zbl 0924.53043
[85] Blas D. 2008 Transverse symmetry and spin-3/2 fields. Class. Quant. Grav. 25, 154009. (doi:10.1088/0264-9381/25/15/154009) · Zbl 1145.83300 · doi:10.1088/0264-9381/25/15/154009
[86] Komargodski Z, Seiberg N. 2009 From linear SUSY to constrained superfields. J. High Energy Phys. 09, 066. (doi:10.1088/1126-6708/2009/09/066) · doi:10.1088/1126-6708/2009/09/066
[87] Grana M. 2006 Flux compactifications in string theory: a Comprehensive review. Phys. Rept. 423, 91-158. (doi:10.1016/j.physrep.2005.10.008) · doi:10.1016/j.physrep.2005.10.008
[88] Kaloper N, Padilla A. 2014 Vacuum energy sequestering: the framework and its cosmological consequences. Phys. Rev. D90, 084023. [Addendum: Phys. Rev. D90, no. 10, 109901 (2014)]. (doi:10.1103/PhysRevD.90.109901) · doi:10.1103/PhysRevD.90.109901
[89] Kaloper N, Padilla A. 2015 Sequestration of vacuum energy and the end of the universe. Phys. Rev. Lett. 114, 101302. (doi:10.1103/PhysRevLett.114.101302) · doi:10.1103/PhysRevLett.114.101302
[90] Kaloper N, Padilla A, Stefanyszyn D. 2016 Sequestering effects on and of vacuum decay. Phys. Rev. D 94, 025022. (doi:10.1103/PhysRevD.94.025022) · Zbl 1356.81164 · doi:10.1103/PhysRevD.94.025022
[91] D’Amico G, Kaloper N, Padilla A, Stefanyszyn D, Westphal A, Zahariade G. 2017 An etude on global vacuum energy sequester. J. High Energy Phys. 09, 074. (doi:10.1007/JHEP09(2017)074) · Zbl 1382.83084 · doi:10.1007/JHEP09(2017)074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.