×

Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity. (English) Zbl 1388.83798

Summary: We consider the minimal three-form \( \mathcal{N} =1\) supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a posictive contribution from the super-symmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.

MSC:

83E50 Supergravity

References:

[1] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys.61 (1989) 1 [INSPIRE]. · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[2] E. Witten, The cosmological constant from the viewpoint of string theory, hep-ph/0002297 [INSPIRE].
[3] A. Aurilia, H. Nicolai and P.K. Townsend, Hidden Constants: The Theta Parameter of QCD and the Cosmological Constant of N = 8 Supergravity, Nucl. Phys.B 176 (1980) 509 [INSPIRE]. · doi:10.1016/0550-3213(80)90466-6
[4] M.J. Duff and P. van Nieuwenhuizen, Quantum Inequivalence of Different Field Representations, Phys. Lett.B 94 (1980) 179 [INSPIRE]. · doi:10.1016/0370-2693(80)90852-7
[5] S.W. Hawking, The Cosmological Constant Is Probably Zero, Phys. Lett.B 134 (1984) 403 [INSPIRE]. · doi:10.1016/0370-2693(84)91370-4
[6] J.D. Brown and C. Teitelboim, Dynamical Neutralization of the Cosmological Constant, Phys. Lett.B 195 (1987) 177 [INSPIRE]. · doi:10.1016/0370-2693(87)91190-7
[7] J.D. Brown and C. Teitelboim, Neutralization of the Cosmological Constant by Membrane Creation, Nucl. Phys.B 297 (1988) 787 [INSPIRE]. · doi:10.1016/0550-3213(88)90559-7
[8] R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE]. · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[9] J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys.B 602 (2001) 307 [hep-th/0005276] [INSPIRE]. · Zbl 0989.83045 · doi:10.1016/S0550-3213(01)00097-9
[10] G.R. Dvali and A. Vilenkin, Field theory models for variable cosmological constant, Phys. Rev.D 64 (2001) 063509 [hep-th/0102142] [INSPIRE].
[11] B. Batell, G.F. Giudice and M. McCullough, Natural Heavy Supersymmetry, JHEP12 (2015) 162 [arXiv:1509.00834] [INSPIRE]. · Zbl 1388.81765 · doi:10.1007/JHEP12(2015)162
[12] P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE]. · doi:10.1103/PhysRevLett.115.221801
[13] M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE]. · doi:10.1103/PhysRevLett.41.451
[14] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev.D 19 (1979) 2300 [INSPIRE].
[15] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett.B 220 (1989) 569 [INSPIRE]. · doi:10.1016/0370-2693(89)90788-0
[16] Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[17] A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino with matter fermions, JHEP11 (1997) 001 [hep-th/9709111] [INSPIRE]. · Zbl 0949.81511 · doi:10.1088/1126-6708/1997/11/001
[18] G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity, Phys. Lett.B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE]. · doi:10.1016/j.physletb.2015.11.066
[19] B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, arXiv:1605.03961 [INSPIRE]. · Zbl 1390.81473
[20] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, U.S.A. (1992), pg. 259. · Zbl 0516.53060
[21] S.J. Gates Jr., Super P form gauge superfields, Nucl. Phys.B 184 (1981) 381 [INSPIRE]. · doi:10.1016/0550-3213(81)90225-X
[22] S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys.58 (1983) 1 [hep-th/0108200] [INSPIRE]. · Zbl 0986.58001
[23] P. Binetruy, F. Pillon, G. Girardi and R. Grimm, The Three form multiplet in supergravity, Nucl. Phys.B 477 (1996) 175 [hep-th/9603181] [INSPIRE]. · Zbl 0925.81361 · doi:10.1016/0550-3213(96)00370-7
[24] B.A. Ovrut and D. Waldram, Membranes and three form supergravity, Nucl. Phys.B 506 (1997) 236 [hep-th/9704045] [INSPIRE]. · Zbl 0925.83111 · doi:10.1016/S0550-3213(97)00510-5
[25] E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett.B 189 (1987) 75 [INSPIRE]. · Zbl 1156.81434 · doi:10.1016/0370-2693(87)91272-X
[26] M.J. Duff and S. Ferrara, Four curious supergravities, Phys. Rev.D 83 (2011) 046007 [arXiv:1010.3173] [INSPIRE].
[27] G.R. Farrar, G. Gabadadze and M. Schwetz, On the effective action of N = 1 supersymmetric Yang-Mills theory, Phys. Rev.D 58 (1998) 015009 [hep-th/9711166] [INSPIRE].
[28] G.R. Dvali, G. Gabadadze and Z. Kakushadze, BPS domain walls in large-N supersymmetric QCD, Nucl. Phys.B 562 (1999) 158 [hep-th/9901032] [INSPIRE]. · Zbl 0958.81144 · doi:10.1016/S0550-3213(99)00562-3
[29] G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
[30] I.A. Bandos and C. Meliveo, Three form potential in (special) minimal supergravity superspace and supermembrane supercurrent, J. Phys. Conf. Ser.343 (2012) 012012 [arXiv:1107.3232] [INSPIRE]. · Zbl 1251.83048 · doi:10.1088/1742-6596/343/1/012012
[31] K. Groh, J. Louis and J. Sommerfeld, Duality and Couplings of 3-Form-Multiplets in N = 1 Supersymmetry, JHEP05 (2013) 001 [arXiv:1212.4639] [INSPIRE]. · doi:10.1007/JHEP05(2013)001
[32] I.A. Bandos and C. Meliveo, Supermembrane interaction with dynamical D = 4 N = 1 supergravity. Superfield Lagrangian description and spacetime equations of motion, JHEP08 (2012) 140 [arXiv:1205.5885] [INSPIRE]. · Zbl 1397.83123
[33] E. Dudas, Three-form multiplet and Inflation, JHEP12 (2014) 014 [arXiv:1407.5688] [INSPIRE]. · doi:10.1007/JHEP12(2014)014
[34] S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, Flux String Vacua, Axion Stability and Naturalness, JHEP12 (2015) 119 [arXiv:1507.06793] [INSPIRE]. · Zbl 1388.83641 · doi:10.1007/JHEP12(2015)119
[35] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[36] J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev.D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].
[37] G. Dall’Agata and F. Farakos, Constrained superfields in Supergravity, JHEP02 (2016) 101 [arXiv:1512.02158] [INSPIRE]. · Zbl 1388.83783 · doi:10.1007/JHEP02(2016)101
[38] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE]. · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[39] S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP10 (2014) 143 [arXiv:1408.4096] [INSPIRE]. · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[40] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP12 (2014) 172 [arXiv:1411.2605] [INSPIRE]. · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[41] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of Nilpotent Supergravity, JHEP09 (2015) 217 [arXiv:1507.07842] [INSPIRE]. · Zbl 1388.83793 · doi:10.1007/JHEP09(2015)217
[42] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev.D 92 (2015) 085040 [Erratum ibid.D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
[43] F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensionalN \[\mathcal{N} = 1\] supergravity, JHEP10 (2015) 106 [arXiv:1507.08619] [INSPIRE]. · Zbl 1388.83818 · doi:10.1007/JHEP10(2015)106
[44] S. Ferrara, M. Porrati and A. Sagnotti, Scale invariant Volkov-Akulov supergravity, Phys. Lett.B 749 (2015) 589 [arXiv:1508.02939] [INSPIRE]. · Zbl 1364.83060 · doi:10.1016/j.physletb.2015.08.066
[45] I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP02 (2016) 080 [arXiv:1511.03024] [INSPIRE]. · Zbl 1388.83729 · doi:10.1007/JHEP02(2016)080
[46] G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP05 (2016) 041 [arXiv:1603.03416] [INSPIRE]. · doi:10.1007/JHEP05(2016)041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.