×

Evolution of holographic entanglement entropy in an anisotropic system. (English) Zbl 1388.83430

Summary: We determine holographically 2-point correlators of gauge invariant operators with large conformal weights and entanglement entropy of strips for a time-dependent anisotropic 5-dimensional asymptotically anti-de Sitter spacetime. At the early stage of evolution where geodesics and extremal surfaces can extend beyond the apparent horizon all observables vary substantially from their thermal value, but thermalize rapidly. At late times we recover quasi-normal ringing of correlators and holographic entanglement entropy around their thermal values, as expected on general grounds. We check the behaviour of holographic entanglement entropy and correlators as function of the separation length of the strip and find agreement with the exact expressions derived in the small and large temperature limits.

MSC:

83C57 Black holes

Software:

Matlab; Octave

References:

[1] D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett.86 (2001) 4783 [nucl-th/0011058] [INSPIRE]. · doi:10.1103/PhysRevLett.86.4783
[2] P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett.B 503 (2001) 58 [hep-ph/0101136] [INSPIRE]. · doi:10.1016/S0370-2693(01)00219-2
[3] T. Hirano and K. Tsuda, Collective flow and two pion correlations from a relativistic hydrodynamic model with early chemical freezeout, Phys. Rev.C 66 (2002) 054905 [nucl-th/0205043] [INSPIRE].
[4] P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett.99 (2007) 172301 [arXiv:0706.1522] [INSPIRE]. · doi:10.1103/PhysRevLett.99.172301
[5] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys.83 (2011) 863 [arXiv:1007.5331] [INSPIRE]. · doi:10.1103/RevModPhys.83.863
[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[8] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[9] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE]. · Zbl 1057.81550
[10] J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.82 (2010) 277 [arXiv:0808.3773] [INSPIRE]. · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[11] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[12] T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys.A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE]. · Zbl 1179.81138
[13] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[14] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[15] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE]. · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[16] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.90 (2003) 227902 [quant-ph/0211074] [INSPIRE]. · doi:10.1103/PhysRevLett.90.227902
[17] A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett.114 (2015) 111602 [arXiv:1410.4089] [INSPIRE]. · doi:10.1103/PhysRevLett.114.111602
[18] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[19] J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP11 (2010) 149 [arXiv:1006.4090] [INSPIRE]. · Zbl 1294.81128 · doi:10.1007/JHEP11(2010)149
[20] V. Balasubramanian et al., Holographic Thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
[21] T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys.13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015 · doi:10.1088/1367-2630/13/4/045017
[22] W. Baron, D. Galante and M. Schvellinger, Dynamics of holographic thermalization, JHEP03 (2013) 070 [arXiv:1212.5234] [INSPIRE]. · doi:10.1007/JHEP03(2013)070
[23] D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP07 (2012) 096 [arXiv:1205.1548] [INSPIRE]. · doi:10.1007/JHEP07(2012)096
[24] V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev.D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].
[25] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
[26] H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE]. · doi:10.1103/PhysRevLett.112.011601
[27] V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Dynamics of gravitational collapse and holographic entropy production, Phys. Rev.D 90 (2014) 064033 [arXiv:1405.7015] [INSPIRE].
[28] V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Gravitational collapse of thin shells: time evolution of the holographic entanglement entropy, JHEP06 (2015) 126 [arXiv:1502.01277] [INSPIRE]. · Zbl 1388.83278 · doi:10.1007/JHEP06(2015)126
[29] M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev.D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].
[30] P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP08 (2014) 051 [arXiv:1401.6088] [INSPIRE]. · doi:10.1007/JHEP08(2014)051
[31] P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett.107 (2011) 031102 [arXiv:1104.3702] [INSPIRE]. · doi:10.1103/PhysRevLett.107.031102
[32] J. Abajo-Arrastia, E. da Silva, E. Lopez, J. Mas and A. Serantes, Holographic Relaxation of Finite Size Isolated Quantum Systems, JHEP05 (2014) 126 [arXiv:1403.2632] [INSPIRE]. · doi:10.1007/JHEP05(2014)126
[33] A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP02 (2015) 017 [arXiv:1410.6201] [INSPIRE]. · Zbl 1388.83092 · doi:10.1007/JHEP02(2015)017
[34] E. da Silva, E. Lopez, J. Mas and A. Serantes, Collapse and Revival in Holographic Quenches, JHEP04 (2015) 038 [arXiv:1412.6002] [INSPIRE]. · Zbl 1388.83149 · doi:10.1007/JHEP04(2015)038
[35] B. Müller and A. Schafer, Entropy Creation in Relativistic Heavy Ion Collisions, Int. J. Mod. Phys.E 20 (2011) 2235 [arXiv:1110.2378] [INSPIRE]. · doi:10.1142/S0218301311020459
[36] K. Narayan, T. Takayanagi and S.P. Trivedi, AdS plane waves and entanglement entropy, JHEP04 (2013) 051 [arXiv:1212.4328] [INSPIRE]. · Zbl 1342.83030 · doi:10.1007/JHEP04(2013)051
[37] P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE]. · doi:10.1103/PhysRevLett.102.211601
[38] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
[39] M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong Coupling Isotropization of Non-Abelian Plasmas Simplified, Phys. Rev. Lett.108 (2012) 191601 [arXiv:1202.0981] [INSPIRE]. · doi:10.1103/PhysRevLett.108.191601
[40] M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP09 (2013) 026 [arXiv:1304.5172] [INSPIRE]. · doi:10.1007/JHEP09(2013)026
[41] P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP07 (2014) 086 [arXiv:1309.1439] [INSPIRE]. · Zbl 1421.81111 · doi:10.1007/JHEP07(2014)086
[42] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[43] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[44] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev.D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].
[45] G. Festuccia and H. Liu, Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE]. · doi:10.1088/1126-6708/2006/04/044
[46] V. Keranen and P. Kleinert, Non-equilibrium scalar two point functions in AdS/CFT, JHEP04 (2015) 119 [arXiv:1412.2806] [INSPIRE]. · Zbl 1388.83277 · doi:10.1007/JHEP04(2015)119
[47] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/045
[48] S.H. John W. Eaton, David Bateman and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations, CreateSpace Independent Publishing Platform (2014).
[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, third edition, Cambridge University Press, New York U.S.A. (2007). · Zbl 1132.65001
[50] A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev.D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].
[51] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].
[52] D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE]. · doi:10.1103/PhysRevLett.88.151301
[53] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/042
[54] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE]. · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[55] V. Balasubramanian, A. Bernamonti, B. Craps, V. Keränen, E. Keski-Vakkuri et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP04 (2013) 069 [arXiv:1212.6066] [INSPIRE]. · Zbl 1342.81476 · doi:10.1007/JHEP04(2013)069
[56] T. Ishii, E. Kiritsis and C. Rosen, Thermalization in a Holographic Confining Gauge Theory, arXiv:1503.07766 [INSPIRE].
[57] J.R. David and S. Khetrapal, Thermalization of Green functions and quasinormal modes, arXiv:1504.04439 [INSPIRE]. · Zbl 1388.83219
[58] J. Bhattacharya and T. Takayanagi, Entropic Counterpart of Perturbative Einstein Equation, JHEP10 (2013) 219 [arXiv:1308.3792] [INSPIRE]. · Zbl 1342.83008 · doi:10.1007/JHEP10(2013)219
[59] W. Fischler and S. Kundu, Strongly Coupled Gauge Theories: High and Low Temperature Behavior of Non-local Observables, JHEP05 (2013) 098 [arXiv:1212.2643] [INSPIRE]. · Zbl 1342.83156 · doi:10.1007/JHEP05(2013)098
[60] D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP08 (2008) 027 [arXiv:0803.3226] [INSPIRE]. · doi:10.1088/1126-6708/2008/08/027
[61] S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev.D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].
[62] P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [INSPIRE]. · doi:10.1103/PhysRevLett.106.021601
[63] B. Wu and P. Romatschke, Shock wave collisions in AdS5: approximate numerical solutions, Int. J. Mod. Phys.C 22 (2011) 1317 [arXiv:1108.3715] [INSPIRE]. · Zbl 1266.81137 · doi:10.1142/S0129183111016920
[64] J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett.111 (2013) 181601 [arXiv:1305.4919] [INSPIRE]. · doi:10.1103/PhysRevLett.111.181601
[65] J. Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition, Dover Books on Mathematics, Dover Publications, New York U.S.A. (2001). · Zbl 0994.65128
[66] L.N. Trefethen, Spectral Methods in MatLab, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2000). · Zbl 0953.68643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.