×

Contact polarizations and associated metrics in geometric thermodynamics. (English) Zbl 1519.80006

Summary: In this work we show that a Legendre transformation is nothing but a mere change of contact polarization from the point of view of contact geometry. Then, we construct a set of Riemannian and pseudo-Riemannian metrics on a contact manifold by introducing almost contact and para-contact structures and we analyze their isometries. We show that it is not possible to find a class of metric tensors which fulfills two properties: on the one hand, to be polarization independent i.e. the Legendre transformations are the corresponding isometries and, on the other, that it induces a Hessian metric into the corresponding Legendre submanifolds. This second property is motivated by the well known Riemannian structures of the geometric description of thermodynamics which are based on Hessian metrics on the space of equilibrium states and whose properties are related to the fluctuations of the system. We find that to define a Riemannian structure with such properties it is necessary to abandon the idea of an associated metric to an almost contact or para-contact structure. We find that even extending the contact metric structure of the thermodynamic phase space the thermodynamic desiderata cannot be fulfilled.

MSC:

80A10 Classical and relativistic thermodynamics
53D22 Canonical transformations in symplectic and contact geometry
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)

References:

[1] Bravetti A, Lopez-Monsalvo C S and Nettel F 2015 Contact symmetries and Hamiltonian thermodynamics Ann. Phys.361 377-400 · Zbl 1360.80003 · doi:10.1016/j.aop.2015.07.010
[2] van der Schaft A and Maschke B 2018 Geometry of thermodynamic processes Entropy20 925 · doi:10.3390/e20120925
[3] Bravetti A, Lopez-Monsalvo C S and Nettel F 2015 Conformal gauge transformations in thermodynamics Entropy17 6150-68 · Zbl 1338.80004 · doi:10.3390/e17096150
[4] Callen H 1985 Thermodynamics and an Introduction to Thermostatistics (New York: Wiley) · Zbl 0989.80500
[5] Mrugala R, Nulton J D, Schön J C and Salamon P 1991 Contact structure in thermodynamic theory Rep. Math. Phys.29 109-21 · Zbl 0742.58022 · doi:10.1016/0034-4877(91)90017-h
[6] Mrugala R 1978 Geometrical formulation of equilibrium phenomenological thermodynamics Rep. Math. Phys.14 419-27 · doi:10.1016/0034-4877(78)90010-1
[7] Vogtmann K, Weinstein A and Arnol’d V 2013 Mathematical Methods of Classical Mechanics(Graduate Texts in Mathematics) (New York: Springer)
[8] Shima H 2007 The Geometry of Hessian Structures (Singapore: World Scientific) · Zbl 1244.53004 · doi:10.1142/6241
[9] García Ariza M Á 2018 Degenerate Hessian structures on radiant manifolds Int. J. Geom. Methods Mod. Phys.15 1850087 · Zbl 1457.80002 · doi:10.1142/s0219887818500871
[10] Goto S-I 2015 Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics J. Math. Phys.56 073301 · Zbl 1327.82072 · doi:10.1063/1.4927226
[11] Weinhold F 1975 Metric geometry of equilibrium thermodynamics J. Chem. Phys.63 2479-83 · doi:10.1063/1.431689
[12] Weinhold F 2009 Classical and Geometrical Theory of Chemical and Phase Thermodynamics: A Non-calculus Based Approach (New York: Wiley)
[13] Ruppeiner G 1979 Thermodynamics: a Riemannian geometric model Phys. Rev. A 20 1608 · doi:10.1103/physreva.20.1608
[14] Ruppeiner G 1995 Riemannian geometry in thermodynamic fluctuation theory Rev. Mod. Phys.67 605-59 · doi:10.1103/revmodphys.67.605
[15] Bravetti A and Nettel F 2014 Thermodynamic curvature and ensemble nonequivalence Phys. Rev. D 90 044064 · doi:10.1103/physrevd.90.044064
[16] Salamon P, Nulton J and Ihrig E 1984 On the relation between entropy and energy versions of thermodynamic length J. Chem. Phys.80 436-7 · doi:10.1063/1.446467
[17] Santoro M 2005 On the Helmholtz potential metric: the isotherm length-work theorem J. Stat. Phys.120 737-55 · Zbl 1092.82018 · doi:10.1007/s10955-005-7006-1
[18] Liu H, Lü H, Luo M and Shao K-N 2010 Thermodynamical metrics and black hole phase transitions J. High Energy Phys. JHEP12(2010)054 · Zbl 1294.83055 · doi:10.1007/jhep12(2010)054
[19] Quevedo H 2007 Geometrothermodynamics J. Math. Phys.48 013506 · Zbl 1121.80011 · doi:10.1063/1.2409524
[20] Pineda-Reyes V, Escamilla-Herrera L F, Gruber C, Nettel F and Quevedo H 2019 Statistical origin of Legendre invariant metrics Physica A 526 120767 · Zbl 07566374 · doi:10.1016/j.physa.2019.04.003
[21] García-Peláez D and López-Monsalvo C S 2014 Infinitesimal Legendre symmetry in the geometrothermodynamics programme J. Math. Phys.55 083515 · Zbl 1298.83119 · doi:10.1063/1.4891921
[22] Wassermann G, Arnol’d V, Dzhamay A, Novikov S, Dubrovin B, Givental’ A, Kirillov A and Krichever I 2001 Dynamical Systems IV: Symplectic Geometry and its Applications(Encyclopaedia of Mathematical Sciences) (Berlin: Springer)
[23] Ivanov S, Vassilev D and Zamkovoy S 2010 Conformal paracontact curvature and the local flatness theorem Geom. Dedicata144 79 · Zbl 1195.53048 · doi:10.1007/s10711-009-9388-8
[24] Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol 1 (New York: Interscience) · Zbl 0119.37502
[25] Blair D 2010 Riemannian Geometry of Contact and Symplectic Manifolds(Progress in Mathematics) (Boston: Birkhäuser) · Zbl 1246.53001 · doi:10.1007/978-0-8176-4959-3
[26] Weinstein A and C B of the Mathematical Sciences 1977 Lectures on Symplectic Manifolds(Regional Conference Series in Mathematics) · Zbl 0406.53031 · doi:10.1090/cbms/029
[27] Boyer C P 2011 Completely integrable contact Hamiltonian systems and toric contact structures on s 2 × s 3 SIGMA7 058 · Zbl 1242.53112 · doi:10.3842/SIGMA.2011.058
[28] de León M and Lainz Valcázar M 2019 Contact Hamiltonian systems J. Math. Phys.60 102902 · Zbl 1427.70039 · doi:10.1063/1.5096475
[29] Bravetti A and Lopez-Monsalvo C S 2015 Para-Sasakian geometry in thermodynamic fluctuation theory J. Phys. A: Math. Theor.48 125206 · Zbl 1321.82022 · doi:10.1088/1751-8113/48/12/125206
[30] Zamkovoy S 2009 Canonical connections on paracontact manifolds Ann. Glob. Anal. Geom.36 08 · Zbl 1177.53031 · doi:10.1007/s10455-008-9147-3
[31] Salamon P, Ihrig E and Berry R S 1983 A group of coordinate transformations which preserve the metric of Weinhold J. Math. Phys.24 2515-20 · doi:10.1063/1.525629
[32] Pineda-Reyes V, Escamilla-Herrera L F, Gruber C, Nettel F and Quevedo H 2021 Reparametrizations and metric structures in thermodynamic phase space Physica A 563 125464 · Zbl 07573995 · doi:10.1016/j.physa.2020.125464
[33] Quevedo H, Sánchez A and Vázquez A 2015 Relativistic like structure of classical thermodynamics Gen. Relativ. Gravit.47 36 · Zbl 1317.83080 · doi:10.1007/s10714-015-1881-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.