×

Reparametrizations and metric structures in thermodynamic phase space. (English) Zbl 07573995

Summary: We investigate the consequences of reparametrizations in the geometric description of thermodynamics analyzing the effects on the thermodynamic phase space. It is known that the contact and Riemannian structures of the thermodynamic phase space are related to thermodynamic equilibrium and statistical fluctuations in the Boltzmann-Gibbs statistical mechanics. The physical motivation for this analysis rests upon the possibility of having, instead of a direct control of the intensive parameters determining the state of the corresponding physical reservoirs, the control of a set of differentiable functions of the original variables. Likewise, we consider a set of differentiable functions of the extensive variables accounting for the possibility of not having direct access to the original variables. We find that the effect of reparametrizations on the thermodynamic phase space can be codified, in geometrical terms, in its contact and Riemannian structures. In particular, we single out a rank-two tensor that enters in the definition of the metric which geometrically comprises the information about such reparametrizations. We notice that even if these geometric structures are modified by the reparametrizations, the metric structure on the thermodynamic space of equilibrium states is preserved.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] Gibbs, J., The Collected Works. Vol 1, Thermodynamics (1948), Yale University Press · Zbl 0031.13504
[2] Carathéodory, C., Examination of the foundations of thermodynamics, Math. Ann., 67, 355-386 (1909)
[3] Hermann, R., Geometry, Physics and Systems (1973), Marcel Dekker: Marcel Dekker New York · Zbl 0285.58001
[4] van der Schaft, Arjan; Maschke, Bernhard, Geometry of thermodynamic processes, Entropy, 20, 12, 925 (2018)
[5] Weinhold, F., Metric geometry of equilibrium thermodynamics I-IV, J. Chem. Phys., 63 (1975), 2479 ff.
[6] Ruppeiner, G., Thermodynamics: A Riemannian geometric model, Phys. Rev. A, 20, 1608 (1979)
[7] Ruppeiner, G., Riemannian geometry in thermodynamic fluctuation theory, Rev. Modern Phys., 67, 605 (1995)
[8] Salamon, P.; Nulton, J. D.; Ihrig, I., On the relation between entropy and energy versions of thermodynamic length, J. Chem. Phys., 80, 436 (1984)
[9] Bravetti, Alessandro; Lopez-Monsalvo, Cesar S.; Nettel, Francisco, Conformal gauge transformations in thermodynamics, Entropy, 17, 9, 6150-6168 (2015), URL http://www.mdpi.com/1099-4300/17/9/6150 · Zbl 1338.80004
[10] Salamon, Peter; Berry, R. Stephen, Thermodynamic length and dissipated availability, Phys. Rev. Lett., 51, 1127-1130 (1983), URL https://link.aps.org/doi/10.1103/PhysRevLett.51.1127
[11] Salamon, Peter; Nulton, James D.; Berry, R. Stephen, Length in statistical thermodynamics, J. Chem. Phys., 82, 5, 2433-2436 (1985)
[12] Janyszek, H., Riemannian geometry and stability of thermodynamical equilibrium systems, J. Phys. A, 23, 4, 477 (1990), URL http://stacks.iop.org/0305-4470/23/i=4/a=017 · Zbl 0724.53052
[13] Janyszek, H.; Mrugala, R., Riemannian geometry and the thermodynamics of model magnetic systems, Phys. Rev. A, 39, 6515-6523 (1989), URL https://link.aps.org/doi/10.1103/PhysRevA.39.6515
[14] Diósi, L.; Forgács, G.; Lukács, B.; Frisch, H. L., Metricization of thermodynamic-state space and the renormalization group, Phys. Rev. A, 29, 3343-3345 (1984), URL https://link.aps.org/doi/10.1103/PhysRevA.29.3343
[15] Amari, S., Differential geometry of curved exponential families-curvatures and information loss, Ann. Statist., 10, 2, 357-385 (1982) · Zbl 0507.62026
[16] Brody, Dorje; Rivier, Nicolas, Geometrical aspects of statistical mechanics, Phys. Rev. E, 51, 1006-1011 (1995), URL https://link.aps.org/doi/10.1103/PhysRevE.51.1006
[17] Amari, S.; Nagaoka, H., Methods of information geometry, IEEE Trans. Inform. Theory, 55, 6, 2905-2906 (2009)
[18] Crooks, Gavin E., Measuring thermodynamic length, Phys. Rev. Lett., 99, Article 100602 pp. (2007), URL https://link.aps.org/doi/10.1103/PhysRevLett.99.100602
[19] Mrugala, R.; Nulton, J. D.; Schön, J. C.; Salamon, P., Statistical approach to the geometric structure of thermodynamics, Phys. Rev. A, 41, 3156 (1990)
[20] Mrugala, Ryszard; Nulton, James D.; Schön, J. Christian; Salamon, Peter, Contact structure in thermodynamic theory, Rep. Math. Phys., 29, 1, 109-121 (1991), URL http://www.sciencedirect.com/science/article/pii/003448779190017H · Zbl 0742.58022
[21] Mrugala, R., On a Riemannian metric on contact thermodynamic spaces, Rep. Math. Phys., 38, 3, 339-348 (1996), URL http://www.sciencedirect.com/science/article/pii/S0034487797848872 · Zbl 0885.53026
[22] Salamon, P.; Andresen, B.; Nulton, J. D.; Konopka, A. K., The mathematical structure of thermodynamics, (Konopka, A. K., Handbook of Systems Biology (2006))
[23] Mrugala, R., Submanifolds in the thermodynamic phase space, Rep. Math. Phys., 21, 2, 197-203 (1985), URL http://www.sciencedirect.com/science/article/pii/003448778590059X · Zbl 0601.58004
[24] Rajeev, S. G., Quantization of contact manifolds and thermodynamics, Ann. Phys., 323, 3, 768-782 (2008), URL http://www.sciencedirect.com/science/article/pii/S000349160700070X · Zbl 1137.81024
[25] Bravetti, A.; Lopez-Monsalvo, C. S., Para-sasakian geometry in thermodynamic fluctuation theory, J. Phys. A, 48, 12, Article 125206 pp. (2015), URL http://stacks.iop.org/1751-8121/48/i=12/a=125206 · Zbl 1321.82022
[26] Bravetti, A.; Lopez-Monsalvo, C. S.; Nettel, F., Contact symmetries and hamiltonian thermodynamics, Ann. Phys., 361, 377-400 (2015), URL http://www.sciencedirect.com/science/article/pii/S0003491615002754 · Zbl 1360.80003
[27] Bravetti, Alessandro, Contact hamiltonian dynamics: The concept and its use, Entropy, 19, 10, 535 (2017)
[28] Quevedo, H., Geometrothermodynamics, J. Math. Phys., 48, Article 013506 pp. (2007) · Zbl 1121.80011
[29] Quevedo, H., Geometrothermodynamics of black holes, Gen. Relativity Gravitation, 40, 971-984 (2008) · Zbl 1140.83398
[30] Quevedo, H.; Quevedo, M. N., Fundamentals of geometrothermodynamics, (Dvoeglazov, V. V.; Molgado, A.; Ortiz, C., The Mathematical Beauty of Symmetry. Proceedings of the 2010 Zacatecas Workshop on Mathematical Physics II, Mexico (2011)) · Zbl 1308.83147
[31] Quevedo, H.; Sanchez, A., Geometrothermodynamics of black holes in two dimensions, Phys. Rev. D, 79, Article 087504 pp. (2009) · Zbl 1222.83113
[32] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620-630, http://dx.doi.org/10.1103/PhysRev.106.620, URL https://link.aps.org/doi/10.1103/PhysRev.106.620. · Zbl 0084.43701
[33] Amari, Shun-ichi, Information Geometry and its Applications (2016), Springer Publishing Company, Incorporated, 9784431559771 · Zbl 1350.94001
[34] Bravetti, Alessandro; Gruber, Christine; Lopez-Monsalvo, Cesar S.; Nettel, Francisco, The zeroth law in quasi-homogeneous thermodynamics and black holes, Phys. Lett. B, 774, 417-424 (2017), URL http://www.sciencedirect.com/science/article/pii/S037026931730802X · Zbl 1403.80011
[35] Rao, C. R., Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37, 81 (1945) · Zbl 0063.06420
[36] Pineda-Reyes, V.; Escamilla-Herrera, L. F.; Gruber, C.; Nettel, F.; Quevedo, H., Statistical origin of Legendre invariant metrics, Physica A, 526, Article 120767 pp. (2019), URL http://www.sciencedirect.com/science/article/pii/S037843711930367X · Zbl 07566374
[37] Arnold, Vladimir Igorevich, Mathematical Methods of Classical Mechanics (2013), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.