×

Convergence analysis of single rate and multirate fixed stress split iterative coupling schemes in heterogeneous poroelastic media. (English) Zbl 1535.65181

Summary: Recently, the accurate modeling of flow-structure interactions has gained more attention and importance for both petroleum and environmental engineering applications. Of particular interest is the coupling between subsurface flow and reservoir geomechanics. Different single rate and multirate iterative and explicit coupling schemes have been proposed and analyzed in the past. In addition, Banach fixed point contraction results were obtained for iterative coupling schemes, and conditionally stable results were obtained for explicit coupling schemes. In this work, we will consider the mathematical analysis of the single rate and multirate fixed stress split iterative coupling schemes for spatially heterogeneous poroelastic media. We will re-establish the contractivity for both schemes in the localized case, and we will show that heterogeneities come at the expense of imposing more restricted conditions on the number of fine flow time steps that can be taken within one coarse mechanics time step in the multirate case. Our mathematical analysis is supplemented by numerical simulations validating our derived upper bounds. To the best of our knowledge, this is the first rigorous mathematical analysis of the multirate fixed-stress split iterative coupling scheme in heterogeneous poroelastic media.
{© 2023 Wiley Periodicals LLC.}

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
47H10 Fixed-point theorems
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L05 Geophysical solid mechanics
74L10 Soil and rock mechanics
74B10 Linear elasticity with initial stresses
86A05 Hydrology, hydrography, oceanography
35A15 Variational methods applied to PDEs
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] E.Ahmed, J. M.Nordbotten, and F. A.Radu, Adaptive asynchronous time‐stepping, stopping criteria, and a posteriori error estimates for fixed‐stress iterative schemes for coupled poromechanics problems, J. Comput. Appl. Math.364 (2020), 112312. · Zbl 1524.76439
[2] T.Almani, Efficient algorithms for flow models coupled with Geomechanics for porous media applications, Ph.D. thesis, The University of Texas at Austin, 2016.
[3] T.Almani, K.Kumar, A.Dogru, G.Singh, and M. F.Wheeler, Convergence analysis of multirate fixed‐stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng.311 (2016), 180-207. · Zbl 1439.74183
[4] T.Almani, K.Kumar, G.Singh, and M. F.Wheeler, Stability of multirate explicit coupling of geomechanics with flow in a poroelastic medium, Comput. Math. Appl.78 (2019), no. 8, 2682-2699. · Zbl 1443.65190
[5] T.Almani, K.Kumar, G.Singh, and M. F.Wheeler. Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics, 15th Eur. Conf. Math. Oil Recover. (ECMOR XV), Aug. 29-Sept. 1, 2016.
[6] T.Almani, K.Kumar, and M. F.Wheeler, Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics, Comput. Geosci.21 (2017), 1157-1172. · Zbl 1396.76047
[7] T.Almani, S.Lee, M. F.Wheeler, and T.Wick, Multirate coupling for flow and geomechanics applied to hydraulic fracturing using an adaptive phase‐field technique, SPE Reserv. Simul. Conf., Houston, TX, February 20‐22, 2017.
[8] T.Almani, A.Manea, K.Kumar, and A. H.Dogru, Convergence of the undrained split iterative scheme for coupling flow with geomechanics in heterogeneous poroelastic media, Comput. Geosci.24 (2020), 551-569. · Zbl 1434.76120
[9] M. A.Biot, Consolidation settlement under a rectangular load distribution, J. Appl. Phys.12 (1941), no. 5, 426-430. · JFM 67.0837.02
[10] M. A.Biot, General theory of three‐dimensional consolidation, J. Appl. Phys.12 (1941), no. 2, 155-164. · JFM 67.0837.01
[11] P. B.Bochev and D.Ridzal, An optimization‐based approach for the design of PDE solution algorithms, SIAM J. Numer. Anal.47 (2009), no. 5, 3938-3955. · Zbl 1203.65097
[12] M.Borregales, K.Kumar, F. A.Radu, C.Rodrigo, and F. J.Gaspar, A partially parallel‐in‐time fixed‐stress splitting method for Biot’s consolidation model, Comput. Math. Appl.77 (2019), no. 6, 1466-1478. · Zbl 1442.65250
[13] M.Borregales, F. A.Radu, K.Kumar, and J. M.Nordbotten, Robust iterative schemes for non‐linear poromechanics, Comput. Geosci.22 (2018), no. 4, 1021-1038. · Zbl 1402.65109
[14] J. W.Both, M.Borregales, J. M.Nordbotten, K.Kumar, and F. A.Radu, Robust fixed stress splitting for biots equations in heterogeneous media, Appl. Math. Lett.68 (2017), 101-108. · Zbl 1383.74025
[15] J. W.Both, K.Kumar, J. M.Nordbotten, and F. A.Radu, Anderson accelerated fixed‐stress splitting schemes for consolidation of unsaturated porous media, Comput. Math. Appl.77 (2019), no. 6, 1479-1502. · Zbl 1442.65251
[16] J. W.Both, K.Kumar, J. M.Nordbotten, and F. A.Radu, The gradient flow structures of thermo‐poro‐visco‐elastic processes in porous media, arXiv:1907.03134, 2019.
[17] L. D.Carciopolo, L.Formaggia, A.Scotti, and H.Hajibeygi, Conservative multirate multiscale simulation of multiphase flow in heterogeneous porous media, J. Comput. Phys.404 (2020), 109134. · Zbl 1453.76091
[18] N.Castelletto, J. A.White, and H. A.Tchelepi, Accuracy and convergence properties of the fixed‐stress iterative solution of two‐way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech.39 (2015), no. 14, 1593-1618.
[19] L. Y.Chin, R.Raghaven, and L. K.Thomas, Fully‐coupled geomechanics and fluid‐flow analysis of wells with stress‐dependent permeability, 1998 SPE Int. Conf. Exhib., Beijing, China, November 2‐6, 1998.
[20] L. Y.Chin, L. K.Thomas, J. E.Sylte, and R. G.Pierson, Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation, Oil Gas Sci. Technol.57 (2002), no. 5, 485-497.
[21] O.Coussy, A general theory of thermoporoelastoplasticity for saturated porous materials, Transp. Porous Media4 (1989), 281-293.
[22] S.Dana, B.Ganis, and M. F.Wheeler, A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys.352 (2018), 1-22. · Zbl 1375.76085
[23] S.Dana and M. F.Wheeler. Convergence analysis of fixed stress split iterative scheme for small strain anisotropic poroelastoplasticity: A primer, arXiv:1810.04163, 2018.
[24] L. S. K.Fung, L.Buchanan, and R. G.Wan, Coupled geomechanical‐thermal simulation for deforming heavy‐oil reservoirs, J. Can. Pet. Technol.33 (1994), no. 4, PETSOC‐94‐04‐03.
[25] X.Gai, A coupled geomechanics and reservoir flow model on parallel computers, Ph.D. thesis, The University of Texas at Austin, 2004.
[26] X.Gai, R. H.Dean, M. F.Wheeler, and R.Liu. Coupled geomechanical and reservoir modeling on parallel computers. The SPE Reserv. Simul. Symp., Houston, TX, February 3-5, 2003.
[27] F. J.Gaspar and C.Rodrigo, On the fixed‐stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Eng.326 (2017), 526-540. · Zbl 1439.74413
[28] J.Geertsma, Problems of rock mechanics in petroleum production engineering, Proc. First Congr. Int. Soc. Rock Mech., Lisbon, 1996, pp. 585-594.
[29] V.Girault, M. F.Wheeler, T.Almani, and S.Dana. A priori error estimates for a discretized poro‐elastic-elastic system solved by a fixed‐stress algorithm, Oil Gas Sci. Technol.74 (2019), 24.
[30] V.Girault, M. F.Wheeler, B.Ganis, and M. E.Mear, A lubrication fracture model in a poro‐elastic medium, Math. Models Methods Appl. Sci.25 (2015), no. 4, 587-645. · Zbl 1309.76194
[31] Q.Hong, J.Kraus, M.Lymbery, and M. F.Wheeler, Parameter‐robust convergence analysis of fixed‐stress split iterative method for multiple‐permeability poroelasticity systems, Multiscale Model. Simul.18 (2020), no. 2, 916-941. · Zbl 1447.65077
[32] J.Hoy, I.Tezaur, and A.Mota. “The schwarz alternating method for multiscale contact mechanics,” CSRI summer proceedings 2021, E. Galvan and D. Smith (eds.), Technical report SAND2021‐9886C, Sandia National Laboratories, 2021.
[33] J.Kim, H. A.Tchelepi, and R.Juanes, Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, SPE J.16 (2009), 249-262.
[34] J.Kim, H. A.Tchelepi, and R.Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits, Comput. Methods Appl. Mech. Eng.200 (2011), no. 23-24, 2094-2116. · Zbl 1228.74106
[35] J.Kim, H. A.Tchelepi, and R.Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed‐stress and fixed‐strain splits, Comput. Methods Appl. Mech. Eng.200 (2011), no. 13-16, 1591-1606. · Zbl 1228.74101
[36] K.Kumar, T.Almani, G.Singh, and M. F.Wheeler, “Multirate undrained splitting for coupled flow and geomechanics in porous media,” Numerical mathematics and advanced applications ENUMATH 2015, B.Karasözen (ed.), M.Manguoğlu (ed.), M.Tezer‐Sezgin (ed.), S.Göktepe (ed.), and Ö.Uğur (ed.) (eds.), Springer International Publishing, Cham, 2016, pp. 431-440. · Zbl 1387.76100
[37] K.Kumar, S.Kyas, J. M.Nordbotten, and S.Repin, Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem, Comput. Math. Appl.91 (2020), 122-149. · Zbl 1524.76458
[38] J. L.Lions, Virtual and effective control for distributed systems and decomposition of everything, J. d’Analyse Math.80 (2000), 257-297. · Zbl 0964.93043
[39] J. L.Lions and O.Pironneau, Virtual control, replicas and decomposition of operators, Comptes Rendus l’Academie Des Sci. I Math.330 (2000), no. 1, 47-54. · Zbl 0962.93020
[40] A.Mikelić, B.Wang, and M. F.Wheeler, Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci.18 (2014), 325-341. · Zbl 1386.76115
[41] A.Mikelić and M. F.Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci.17 (2013), 455-461. · Zbl 1392.35235
[42] A.Mota, I.Tezaur, and A.Coleman, The schwarz alternating method in solid mechanics, Comput. Methods Appl. Mech. Eng.319 (2017), 19-51. · Zbl 1439.74450
[43] A.Mota, I.Tezaur, and G.Phlipot, The Schwarz alternating method for transient solid dynamics, Int. J. Numer. Meth. Eng.123(2022), 5036-5071. · Zbl 07769269
[44] M. A.Murad, M. R.Correa, M. R.Borges, J. A.Luízar‐Obregón, and T. V.Lopes, A fixed‐stress split strategy for two‐phase flow in heterogeneous poroelastic media overlain by viscoelastic rock salt layers, Comput. Methods Appl. Mech. Eng.380 (2021), 113768. · Zbl 1506.76171
[45] R.Quevedo and D.Roehl, A novel iterative method based on fixed stress rates for hydromechanical problems with nonlinear constitutive relationships, Comput. Geotech.130 (2021), 103887.
[46] J. R.Rice and M. P.Cleary, Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys.14 (1976), 227.
[47] I.Rybak, J.Magiera, R.Helmig, and C.Rohde, Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems, Comput. Geosci.19 (2015), no. 2, 299-309. · Zbl 1392.76090
[48] V.Savcenco, W.Hundsdorfer, and J. G.Verwer, A multirate time stepping strategy for stiff ordinary differential equations, BIT Numer. Math.47 (2007), no. 1, 137-155. · Zbl 1113.65071
[49] A.Settari and F. M.Mourits, Coupling of geomechanics and reservoir simulation models, Comp. Methods Adv. Geomech.3 (1994), 2151-2158.
[50] L.Shan, H.Zheng, and W. J.Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Equ.29 (2013), no. 2, 549-583. · Zbl 1364.76096
[51] G.Singh, Coupled flow and geomechanics modeling for fractured poroelastic reservoirs, Ph.D. thesis, The University of Texas at Austin, 2014.
[52] J. C.Small, J. R.Booker, and E. H.Davis, Elasto‐plastic consolidation of soil, Int. J. Solids Struct.12 (1976), no. 6, 431-448. · Zbl 0333.73073
[53] E.Storvik, J. W.Both, K.Kumar, J. M.Nordbotten, and F. A.Radu, On the optimization of the fixed‐stress splitting for Biot’s equations, Int. J. Numer. Methods Eng.120 (2019), no. 2, 179-194. · Zbl 07859732
[54] K.vonTerzaghi, Theoretical soil mechanics, Wiley, New York, 1943.
[55] M. F.Wheeler, G.Xue, and I.Yotov, A family of multipoint flux mixed finite element methods for elliptic problems on general grids, Procedia Comput. Sci.4 (2011), 918-927.
[56] M. F.Wheeler and I.Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal.44 (2006), 2082-2106. · Zbl 1121.76040
[57] J. A.White, N.Castelletto, and H. A.Tchelepi, Block‐partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Eng.303 (2016), 55-74. · Zbl 1425.74497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.