×

Analytical solutions of fractional order diffusion equations by natural transform method. (English) Zbl 1397.35339

Summary: In this article, we develop an analytical method for solving fractional order partial differential equations. Our method is the generalizations of homotopy perturbations Laplace transform method and homotopy perturbations Sumudu transform method. The solutions obtained using the proposed method implies that the method is highly accurate and easy to implement. The proposed method can be easily applied to a large variety of problems, which are modeled in terms of fractional order partial differential equations. Some test problems are solved to show the accuracy of the proposed method. Some results are shown graphically also.

MSC:

35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Abdel-Salam; Emad, AB; Eltayeb, A; Yousif; Mostafa, A; El-Aasser, Analytical solution of the space-time fractional nonlinear schrdinger equation, Rep Math Phys, 77, 19-34, (2016) · Zbl 1378.35318 · doi:10.1016/S0034-4877(16)30002-7
[2] Anastassiou, GA, On right fractional calculus, Chaos Solit Frac, 42, 365-376, (2009) · Zbl 1198.26006 · doi:10.1016/j.chaos.2008.12.013
[3] Atangana, A, On the new fractional derivative and application to nonlinear fisher’s reaction-diffusion equation, Appl Math Comput, 273, 948-956, (2016) · Zbl 1410.35272
[4] Ayati, Z; Biazar, J, On the convergence of homotopy perturbation method, J Egypt Math Soc, 23, 424-428, (2015) · Zbl 1328.65112 · doi:10.1016/j.joems.2014.06.015
[5] Belgacem, FBM; Silambarasan, R, Theory of natural transform, aerospace (MESA), Math Eng Sci, 3, 99-124, (2012) · Zbl 1250.44002
[6] Biazar, J; Aminikhah, H, Study of convergence of homotopy perturbation method for system of partial differential equations, Comput Math Appl, 58, 2221-2230, (2009) · Zbl 1189.65246 · doi:10.1016/j.camwa.2009.03.030
[7] Das, S, Analytical solution of a fractional diffusion equation by variational iteration method, Comput Math Appl, 57, 483-487, (2009) · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[8] Das, S, Analytical solution of a fractional diffusion equation by variational iteration method, Comput Math Appl, 57, 483-487, (2009) · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[9] Fu, Z; Chen, W; Yang, H, Boundary particle method for Laplace transformed time fractional diffusion equations, J Comput Phys, 235, 52-66, (2013) · Zbl 1291.76256 · doi:10.1016/j.jcp.2012.10.018
[10] Gómez-Aguilar, JF; López-López, MG; Alvarado-Martnez, VM; Reyes-Reyes, J; Adam-Medina, M, Modeling diffusive transport with a fractional derivative without singular kernel, Phys A Stat Mech Appl, 447, 467-481, (2016) · Zbl 1400.82237 · doi:10.1016/j.physa.2015.12.066
[11] Gómez-Aguilar, JF; Miranda-Hernández, M; López-López, MG; Alvarado-Martínez, VM; Baleanu, D, Modeling and simulation of the fractional space-time diffusion equation, Commun Nonlinear Sci Numer Simul, 30, 115-127, (2016) · Zbl 1489.78003 · doi:10.1016/j.cnsns.2015.06.014
[12] Gómez-Aguilar, JF; Torres, L; Ypez-Martnez, H; Baleanu, D; Reyes, JM; Sosa, IO, Fractional linard type model of a pipeline within the fractional derivative without singular kernel, Adv Diff Equ, 2016, 1-13, (2016) · Zbl 1419.35208 · doi:10.1186/s13662-016-0908-1
[13] He, JH, Homotopy perturbation technique, Comput Methods Appl Mech Eng, 178, 257-262, (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[14] He, JH, Coupling method of a homotopy technique and a perturbation technique for non-linear problems, J Nonlinear Mech, 35, 37-43, (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[15] He, JH, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fract, 26, 695-700, (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[16] Hilfer R (ed) (2000) Application of fractional calculus in physics. World scientific publishing Co., Singapore · Zbl 0998.26002
[17] Jafari, MA; Aminataei, A, Improved homotopy perturbation method, Int Math Forum, 5, 1567-1579, (2010) · Zbl 1207.35017
[18] Javidi, M; Ahmad, B, Numerical solution of fractional partial differential equations by numerical Laplace inversion technique, Adv Diff Equ, 2013, 1-17, (2013) · Zbl 1347.34012 · doi:10.1186/1687-1847-2013-375
[19] Kexue, L; Jigen, P, Laplace transform and fractional differential equations, Appl Math Lett, 24, 2019-2023, (2011) · Zbl 1238.34013 · doi:10.1016/j.aml.2011.05.035
[20] Khalil, H; Khan, RA, A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation, Comput Math Appl, 67, 1938-1953, (2014) · Zbl 1366.74084 · doi:10.1016/j.camwa.2014.03.008
[21] Khalil, H; Mohammed Al-Smadi; Khaled Moaddy; Rahmat Ali Khan; Ishak Hashim, Toward the approximate solution for fractional order nonlinear mixed derivative and nonlocal boundary value problems, Discrete Dyn Nat. Soc, 2016, 12, (2016) · Zbl 1422.65296 · doi:10.1155/2016/5601821
[22] Khalil, H; Rahmat Ali Khan, Extended spectral method for fractional order three-dimensional heat conduction problem, Prog Fract Diff Appl, 1, 165-185, (2015)
[23] Khalil, H; Rahmat Ali Khan; Mohammed Al Smadi; Asad Freihat, Approximation of solution of time fractional order three-dimensional heat conduction problems with Jacobi polynomials, J Math, 47, 35-56, (2015) · Zbl 1337.65166
[24] Khan, NA; Ayaz, M; Khan, NU; Jin, L, On approximate solutions for the time-fractional reaction-diffusion equation of Fisher type, Int J Phys Sci, 6, 2483-2496, (2011)
[25] Khan, ZH; Khan, WA, N-transform properties and applications, NUST J Eng Sci, 1, 127-133, (2008)
[26] Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, 24. North-Holland Mathematics Studies, Amsterdame · Zbl 1092.45003
[27] Kumar, S; Yildirim, A; Khan, Y; Wei, L, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci Iran B, 19, 1117-1123, (2012) · doi:10.1016/j.scient.2012.06.016
[28] Liao SJ (2003) Beyond perturbation introduction to homotopy analysis method. CRC Press Company, Boca Raton · Zbl 1051.76001 · doi:10.1201/9780203491164
[29] Luchko, YU; Gorenflo, R, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math Vietnam, 24, 207-233, (1999) · Zbl 0931.44003
[30] Madani, M; Fathizadeh, M; Khan, Y; Yildirim, A, On the coupling of the homotopy perturbation method and Laplace transformation, Math Comput Model, 53, 1937-1945, (2011) · Zbl 1219.65121 · doi:10.1016/j.mcm.2011.01.023
[31] Moaddy, K; Momani, S; Hashim, I, The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput Math Appl, 61, 1209-1216, (2011) · Zbl 1217.65174 · doi:10.1016/j.camwa.2010.12.072
[32] Mohebbi, A; Abbaszadeh, M; Dehghan, M, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J Comput Phys, 240, 36-48, (2013) · Zbl 1287.65064 · doi:10.1016/j.jcp.2012.11.052
[33] Momani, S; Yildirim, A, Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by he’s homotopy perturbation method, Int J Comp Math, 87, 1057-1065, (2010) · Zbl 1192.65137 · doi:10.1080/00207160903023581
[34] Morales-Delgado, VF; Gmez-Aguilar, JF; Yepez-Martnez, H; Baleanu, D; Escobar-Jimenez, RF; Olivares-Peregrino, VH, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv Diff Equ, 2016, 1-12, (2016) · Zbl 1419.35220 · doi:10.1186/s13662-016-0891-6
[35] Morgado, ML; Rebelo, M, Numerical approximation of distributed order reaction-diffusion equations, J Comput Appl Math, 275, 216-227, (2015) · Zbl 1298.35242 · doi:10.1016/j.cam.2014.07.029
[36] Moustafa, OL, On the Cauchy problem for some fractional order partial differential equations, chaos solitons fractals, Chaos Solitons Fract, 18, 135-140, (2003) · Zbl 1059.35034 · doi:10.1016/S0960-0779(02)00586-6
[37] Pang, G; Chen, W; Fu, Z, Space-fractional advection-dispersion equations by the kansa method, J Comput Phys, 293, 280-296, (2015) · Zbl 1349.65522 · doi:10.1016/j.jcp.2014.07.020
[38] Rathore, S; Kumar, D; Sing, J; Gupta, S, Homotopy analysis sumudu transform method for nonlinear equations, Int J Ind Math, 4, 301-314, (2012)
[39] Ray, SS; Bera, RK, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl Math Comput, 174, 329-336, (2006) · Zbl 1089.65108
[40] Rudin W (1964) Principles of mathematical analysis, 2nd edn. McGraw-Hill, New York · Zbl 0148.02903
[41] Shah, K; Junaid, M; Ali, N, Extraction of Laplace, sumudu, Fourier and Mellin transform from the natural transform, J Appl Envron Biol Sci, 5, 1-10, (2015)
[42] Shah, K; Khan, RA, The applications of natural transform to the analytical solutions of some fractional order ordinary differential equations, Sindh Univ Res J, 47, 683-686, (2015)
[43] Silambarasn R, Belgacem FBM (2011) Applications of the natural trans-form to Maxwell’s equations, progress. In: electromagnetics research symposium proceedings, Suzhou, China, Sept., 12(16), 11 pages
[44] Sun, H; Chen, W; Sze, K, A semi-discrete finite element method for a class of time-fractional diffusion equations, Philos Trans R Soc A, 371, 1471-1485, (2013) · Zbl 1339.65156 · doi:10.1098/rsta.2012.0268
[45] Wu, GC; Baleanu, D; Zeng, SD; Deng, ZG, Discrete fractional diffusion equation, Nonlinear Dyn, 80, 281-286, (2015) · Zbl 1345.65067 · doi:10.1007/s11071-014-1867-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.