×

Approximation of functions by complex conformable derivative bases in Fréchet spaces. (English) Zbl 1535.30014


MSC:

30C10 Polynomials and rational functions of one complex variable
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] CannonB. On the convergence of series of polynomials. Proc London Math Soc. 1937;43:348‐364. · Zbl 0017.25301
[2] CannonB. On the convergence of integral functions by general basic series. Math Zeitschrift. 1939;45:158‐205.
[3] WhittakerJM. On Series of poynomials. Quart J Math (Oxford). 1934;5:224‐239. · Zbl 0009.34205
[4] WhittakerJM. Collaboration de C. Gattegno. (Collection de monographies sur la theorie des fonctions). VI. Paris: Gauthier‐ Villars; 1949. · Zbl 0038.22804
[5] Abul‐EzMA. Bessel polynomial expansions in spaces of holomorphic functions. J Math Anal Appl. 1998;221:177‐190. · Zbl 0913.46003
[6] AbdallaM, Abul‐EzMA, MoraisJ. On the construction of generalized monogenic Bessel polynomials. Math Meth Appl Sci. 2018;41:9335‐9348. · Zbl 1409.30044
[7] Abul‐EzMA, ZayedM. Criteria in Nuclear Fréchet spaces and Silva spaces with refinement of the Cannon‐Whittaker theory. J Funct Spaces. 2020;2020:15. · Zbl 1459.46002
[8] AlouiL, Abul‐EzMA, HassanGF. Bernoulli special monogenic polynomials with the difference and sum polynomial bases. Complex Variables Elliptic Equ. 2014;59:631‐650. · Zbl 1288.30048
[9] AlouiL, Abul‐EzMA, HassanGF. On the order of the difference and sum bases of polynomials in Clifford setting. Complex Variables Elliptic Equ. 2010;55:1117‐1130. · Zbl 1233.30022
[10] HassanGF, AlouiL. Bernoulli and Euler polynomials in Clifford analysis. Adv Appl Clifford Algebras. 2015;25:351‐376. · Zbl 1320.30087
[11] MakarRH. On derived and integral basic sets of polynomials. Proc Amer Math Soc. 1954;5:218‐225. · Zbl 0056.07001
[12] MikhailMN. Derived and integral sets of basic sets of polynomials. Proc Amer Math Soc. 1953;4:251‐259. · Zbl 0052.07401
[13] NewnsMA. On the representation of analytic functions by infinite series. Philos Trans Roy Soc London Ser A. 1953;245:429‐468. · Zbl 0050.07702
[14] HassanGF. Ruscheweyh differential operator sets of basic sets of polynomials of several complex variables in hyperelliptical regions. Acta Math Academiae Paedagogicae Nyiregyhaziensis. 2006;22:247‐264. · Zbl 1120.32001
[15] KishkaZG, SaleemMA, Abul‐DahabMA. On simple exponential sets of polynomials. Mediterr J Math. 2014;11:337‐347. · Zbl 1290.32002
[16] KumuyiWF, NassifM. Derived and integrated sets of simple sets of polynomials in two complex variables. J Approx Theory. 1986;47:270‐283. · Zbl 0604.41007
[17] AlouiL, HassanGF. Hypercomplex derivative bases of polynomials in Clifford analysis. Math Methods Appl Sci. 2010;33:350‐357. · Zbl 1182.30080
[18] ZayedM, Abul‐EzMA, MoraisJP. Generalized Derivative and primitive of Cliffordian bases of polynomials constructed through Appell monomials. Comput Methods Funct Theory. 2012;12:501‐515. · Zbl 1257.30058
[19] AdepojuJA. Basic sets of Gonarov polynomials and Faber regions. Ph.D Thesis: Lagos; 1979.
[20] El‐Sayed AhmedA. On some classes and spaces of holomorphic and hyperholomorphic functions. Ph.D. Thesis: Bauhaus University, Weimar, Germany; 2003.
[21] El‐SayedA, KishkaZG. On the effectiveness of basic sets of polynomials of several complex variables in elliptical regions. In: Proceedings of the 3rd International ISAAC Congress, Freie Universitaet Berlin, Germany. Kluwer, Dordrecht; 2003:265‐278. · Zbl 1152.32300
[22] HassanGF, AlouiL, BakaliL. Basic sets of special monogenic polynomials in Fréchet modules. J Complex Anal. 2017;2017:2075938. · Zbl 1412.30138
[23] KilbasA, SrivastasaH, TrujilloJ. Theory and Applications of Fractional Differential Equations. Math. Studies, North‐Holland, New York, ch. 2; 2006. · Zbl 1092.45003
[24] JumarieG. Modified Riemann‐Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl. 2006;51:1367‐1376. · Zbl 1137.65001
[25] JumarieG. New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations. Math Comput Model. 2006;44:231‐254. · Zbl 1130.92043
[26] JumarieG. Laplace’s transform of fractional order via the Mittag‐Leffler function and modified Riemann‐Liouville derivative. Appl Math Lett. 2009;22:1659‐1664. · Zbl 1181.44001
[27] KhalilR, Al‐HoraniM, YousefA, SababhehM. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65‐70. · Zbl 1297.26013
[28] AbdeljawadT. On conformable fractional calculus. J Comput Appl Math. 2015;279:57‐66. · Zbl 1304.26004
[29] UcarS, OzgurNY. Complex conformable derivative. Arab J Geosci. 2019;12:1‐6.
[30] KhalilR, YousefA, Al HoraniAM, SababhehM. Fractional analysis functions. Far East J Math Sci. 2018;103:113‐123.
[31] MartínezF, MartínezI, KaabarMKA, ParedesS. New results on complex conformable integral. AIMS Math. 2020;5:7695‐7710. · Zbl 1484.30002
[32] MartínezF, MartínezI, KaabarMKA, et al. Note on the conformable fractional derivatives and integrals of complex‐valued functions of a real variable. IAENG Int J Appl Math. 2020;50:609‐615.
[33] UçarS, ÖzgürN. Complex conformable Rolle’s and mean value theorems. Math Sci. 2020;14:215‐218. · Zbl 1475.30097
[34] Abdel‐SalamEA‐B, YousifEA, El‐AasserMA. Analytical Solution of the space‐time fractional nonlinear Schrödinger equation. Rep Math Phys. 2016;19:77. · Zbl 1378.35318
[35] Abdel‐SalamEA‐B, HassanGF. Solutions to class of linear and nonlinear fractional differential equations. Commun Theor Phys. 2016;65:127. · Zbl 1335.35268
[36] Abdel‐SalamEA‐B, NouhMI. Conformable fractional polytropic gas spheres. New Astron. 2020;76:101322.
[37] Abdel‐SalamEA‐B, NouhMI. Approximate solution to the fractional second‐type lane‐emden equation. Astrophysics. 2016;59:398.
[38] Abdel‐SalamEA‐B, MouradMF. Fractional quasi AKNS-technique for nonlinear space‐time fractional evolution equations. Math Methods Appl Sci. 2018;42:5953‐5968. · Zbl 1431.37052
[39] AddaFB, CressonJ. About non‐differentiable functions. J Math Anal Appl. 2001;263:721‐737. · Zbl 0995.26006
[40] ChenW, SunHG. Multiscale statistical model of fully‐developed turbulence particle accelerations. Modern Phys Lett B. 2009;23:449. · Zbl 1386.76089
[41] CressonJ. OScale calculus and the Schrödinger equation. J Math Phys. 2003;44:4907‐4938. · Zbl 1062.39022
[42] KolwankarKM, GangalAD. Local fractional Fokker‐Planck equation. Phys Rev Lett. 1998;80:214‐217. · Zbl 0945.82005
[43] NouhMI, Abdel‐SalamEA‐B, Abdel‐SalamEA‐B. Analytical solution to the fractional polytropic gas spheres. Eur Phys J Plus. 2018;133:149.
[44] YousifEA, Abdel‐SalamEA‐B, El‐AasserMA. On the solution of the space‐time fractional cubic nonlinear Schrödinger equation. Results Phys (Oxford). 2018;8:702.
[45] Abul‐EzMA, ConstalesD. On the order of basic series representing Clifford valued functions. Appl Math Comput. 2003;142:575‐584. · Zbl 1058.30040
[46] HassanGF. A note on the growth order of the inverse and product bases of special monogenic polynomals. Math Method Appl Sci. 2012;35:286‐292. · Zbl 1254.30084
[47] AbdallaM, Abul‐EzM, Al‐AhmadiA. Further results on the inverse base of axially monogenic polynomials. Bull Malays Math Sci Soc. 2019;42:1369‐1381. · Zbl 1421.30061
[48] AbdallaM, Abul‐EzM. The growth of generalized Hadamard product of entire axially monogenic functions. Hacettepe J Math Stat. 2018;47:1231‐1239. · Zbl 1488.30238
[49] Abul‐EzMA, Abd‐ElmageedH, HidanM, AbdallaM. On the growth order and growth type of entire functions of several complex matrices. J Function Spaces. 2020;2020:4027529. · Zbl 1436.32010
[50] ZayedM. Certain bases of polynomials associated with entire functions in Clifford analysis. Adv Appl Clifford Algebras. 2021;31:28. · Zbl 1468.30089
[51] ZayedM. Lower growth of gneralized Hadamard product functions in Clifford setting. Bull Malays Math Sci Soc. 2021;44:805‐826. · Zbl 1462.30104
[52] Abul‐EzMA, ConstalesD. Basic sets of polynomials in Clifford analysis. Complex Variables Elliptic Equ. 1990;14:177‐185. · Zbl 0663.41009
[53] Abul‐EzMA, ConstalesD, MoraisJ, ZayadM. Hadamard three‐hyperballs type theorem and overconvergence of special monogenic simple series. J Math Anal Appl. 2014;412:426‐434. · Zbl 1320.30084
[54] SaleemMA, Abul‐EzM, ZayedM. On polynomial series expansions of Cliffordian functions. Math Methods Appl Sci. 2012;35:134‐143. · Zbl 1254.30087
[55] Abdel‐SalamEA‐B, JazmatiMS, AhmadH. Geometrical study and solutions for family of burgers‐ like equation with fractional order space time. Alex Eng J. 2022;61:511‐521.
[56] Abo‐DahabSM, KilanyAA, Abdel‐SalamEA‐B, HatemA. Fractional derivative order analysis and temperature‐dependent properties on p‐ and SV‐waves reflection under initial stress and three‐phase‐lag model. Results Phys. 2020;18:103270.
[57] AzzamYA, Abdel‐SalamEA‐B, NouhMI. Artificial Neural Network Modeling of the Conformable Fractional Isothermal Gas Spheres. Revista Mexicana de Astronomia y Astrofimsica. 2021;57:189‐198.
[58] NouhMI, AzzamYA, Abdel‐SalamEA‐B. Modeling fractional polytropic gas spheres using artificial neural network. Neural Comput Appl. 2021;33:4533‐4546.
[59] ZayedM. Generalized Hadamard product bases of special monogenic polynomials. Adv Appl Clifford Algebras. 2020;30:10. · Zbl 1435.30145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.