×

Fractional quasi AKNS-technique for nonlinear space-time fractional evolution equations. (English) Zbl 1431.37052

Summary: This paper aims to formulate the fractional quasi-inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz-Kaup-Newell-Segur (AKNS) method be applied to the space-time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi-conservation laws for the considered fractional equations from the defined fractional quasi AKNS-like system. The nonlinear fractional differential equations to be studied are the space-time fractional versions of the Kortweg-de Vries equation, modified Kortweg-de Vries equation, the sine-Gordon equation, the sinh-Gordon equation, the Liouville equation, the cosh-Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
35R11 Fractional partial differential equations
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] LoutsenkoI, RoubtsovD. Critical velocities in exciton superfluidity. Phys Rev Lett. 1997;78(15):3011‐3014.; TajiriM, MaesonoH. Resonant interactions of drift vortex solitons in a convective motion of a plasma. Phys Rev E. 1997;55(3):3351‐3357.; KivsharYS, MelomendBA. Dynamics of solitons in nearly integrable systems. Rev Mod Phys. 1989;61:765.
[2] AblowitzMJ, KaupDJ, NewellAC, SegurH. Nonlinear‐evolution equations of physical significance. Phys Rev Lett. 1973;31(2):125‐127.; The inverse scattering transform‐Fourier analysis for nonlinear problems. Stud Appl Math. 1974;53(4):249‐315. · Zbl 0408.35068
[3] AblowitzMJ, ClarksonPA. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press; 1991. · Zbl 0762.35001
[4] LuBQ, QuBZ, PanZL, JiangXF. Exact traveling wave solution of one class of nonlinear diffusion equations. Phys Lett A. 1993;175(2):113‐115.; YangZJ. Travelling wave solutions to nonlinear evolution and wave equations. J Phys A Math Gen. 1994;27(8):2837‐2855.; WangML, ZhouYB, LiZB. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys Lett A. 1996;216(1‐5):67‐75.; YanCT. A simple transformation for nonlinear waves. Phys Lett A. 1996;224(1‐2):77‐84.
[5] MiuraRM. Bäcklund Transformation. Berlin: Springer Verlag; 1979.; RogersC, ShadwickWE. Bäcklund Transformations and their Applications. New York: Academic Press; 1982. · Zbl 0492.58002
[6] AblowitzMJ, SegurH. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM; 1981. · Zbl 0472.35002
[7] KonnoK, WadatiM. Simple derivation of Backlund transformation from Riccati form of inverse method. Prog Theor Phys. 1975;53(6):1652‐1656. · Zbl 1079.35505
[8] NucciMC. Pseudopotentials, Lax equations and Backlund transformations for nonlinear evolution equations. J Phys A Math Gen. 1988;21(1):73‐79. · Zbl 0697.35134
[9] MatveevVB, SalleMA. Darboux Transformations and Solitons. Berlin: Springer Verlag; 1991. · Zbl 0744.35045
[10] DunajskiM. Soliton, Instantons, and Twistors. New York: Oxford University Press Inc.; 2010. · Zbl 1197.35209
[11] FaddeevLLD, TakhtajanLA. Hamiltonian Methods in the Theory of Solitons, reprinted 1987. Berlin Heielberg: Springser‐Verlag; 2007. · Zbl 0632.58004
[12] LambLB. Elements of Solitons. New York: Wiley‐Interscience; 1980. · Zbl 0445.35001
[13] WadatiM, SanukiH, KonnoK. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog Theor Phys. 1975;53(2):419‐436. · Zbl 1079.35506
[14] KonnoK, SanukiH, IchikawaYH. Conservation laws of nonlinear‐evolution equations. Prog Theor Phys. 1974;52(3):886‐889.
[15] ZakharovV, ShabatA. Exact theory of two‐dimensional self‐focusing and one‐dimensional self‐modulation of waves in nonlinear media. Sov Phys JETP. 1972;34:62.
[16] MouradMF, SasakiR. Nonlinear sigma models on a half plane. Int J Mod Phys A. 1996;11(17):3127‐3143. · Zbl 1044.81724
[17] WadatiM. Transformation theories for nonlinear discrete systems. Prog Theor Phys Suppl. 1976;59:36‐63.; WadatiM, WaatanabeM. Conservation laws of a Volterra system and nonlinear self‐dual network equation. Prog Theor Phys. 1977;57(3):808‐811.; TsuchidaT, UjinoH, WadatiM. Integrable semi‐discretization of the coupled modified KdV equations. J Math Phys. 1998;39(9):4785‐4813.; Integrable semi‐discretization of the coupled nonlinear Schrödinger equations. J Phys A Math Gen. 1999;32(11):2239‐2262.
[18] GardnerCS, GreeneJM, KruskalMD, MiuraRM. Method for solving the Korteweg‐deVries equation. Phys Rev Lett. 1967;19(19):1095‐1097. · Zbl 1061.35520
[19] LaxPD. Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math. 1968;21(5):467‐490. · Zbl 0162.41103
[20] ZaitRA. Bäcklund transformations and solutions for some evolution equations. Phys Scripta. 1998;57(5):545‐548. · Zbl 1063.35537
[21] FujiiK, KoikawaT, SasakiR. Classical solutions for the supersymmetric Grassmannian sigma models in two dimensions. I. Prog Theor Phys. 1984;71(2):388‐394.; FujiiK, SasakiR. Classical solutions for the supersymmetric Grassmannian sigma models in two dimensions. II. Prog Theor Phys. 1984;71(4):831‐839.; El‐SabbaghMF, ZaitRA. Nonlocal conserved currents for the supersymmetric U(N) sigma model. Phys Scripta. 1993;47(1):9‐12.; ZaitRA. Baecklund transformations for the U (N) σ models and the SUSY U (N) σ models. Helv Phys Acta. 1996;69:105.; ZaitRA. On the Bäcklund transformations for integrable models in two dimensions. Nonlinearity. 1998;11(3):631‐640.; ZaitRA. Bäcklund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos, Solitons Fractals. 2003;15(4):673‐678.; HassanienIA, ZaitRA, Abdel‐SalamEA‐B. Multicnoidal and multitravelling wave solutions for some nonlinear equations of mathematical physics. Phys Scripta. 2003;67(6):457‐463.
[22] SakovichA, SakovichS. The short pulse equation is integrable. J Physical Soc Japan. 2005;74(1):239‐241. · Zbl 1067.35115
[23] KonnoK. Integrable coupled dispersionless equations. Appl Anal. 1995;57(1‐2):209‐220.; KonnoK, KakuhataH. Interaction among growing, decaying and stationary solitons for coupled integrable dispersionless equations. J Physical Soc Japan. 1995;64(8):2707‐2709.; KonnoK, KakuhataH. Novel solitonic evolutions in a coupled integrable, dispersionless system. J Physical Soc Japan. 1996;65(3):713‐721.; KakuhataH, KonnoK. Lagrangian, Hamiltonian and conserved quantities for coupled integrable, dispersionless equations. J Physical Soc Japan. 1996;65(1):1‐2.
[24] KhaterAH, El‐KalaawyOH, HelalMA. Two new classes of exact solutions for the KdV equation via Bäcklund transformations. Chaos, Solitons Fractals. 1997;8(12):1901‐1909;; KhaterAH, IbrahimRS, El‐KalaawyOH, CallebautDK. Bäcklund transformations and exact soliton solutions for some nonlinear evolution equations of the zs/akns system. Chaos, Solitons Fractals. 1998;9(11):1847‐1855.; KhaterAH, CallebautDK, AbdallaAA, SayedSM. Exact solutions for self‐dual Yang-Mills equations. Chaos, Solitons Fractals. 1999;10(8):1309‐1320;; KhaterAH, CallebautDK, SayedSM. Conservation laws for some nonlinear evolution equations which describe pseudo‐spherical surfaces. J Geom Phys. 51(2004):332‐352.
[25] FaddeevLD. Two‐dimensional integrable models in quantum field theory. Phys Scripta. 1981;24(5):832‐835. · Zbl 1063.81643
[26] PodlubnyI. Fractional Differential Equations. New York: Academic Press; 1999.; KilbasAA, SrivastavaHM, TrujilloJJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier B.V.; 2006.; HilferR. Applications of Fractional Calculus in Physics. Singapore: World Sci.; 2000.; MillerKS, RossB. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York, NY, USA: John Wiley and Sons; 1993.; SamkoSG, KilbasAA, MarichevOI. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science. Switzerland: Yverdon; 1993. · Zbl 0789.26002
[27] Abdel‐SalamEA‐B, YousifEA, El‐AasserMA. Analytical Solution of the Space‐Time Fractional Nonlinear Schrödinger Equation. Rep Math Phys. 2016;77(19):19‐34.; OliveiraEC, CostaFS, VazJJr. The fractional Schrödinger equation for delta potentials. J Math Phys. 2010;51(12):123517.; AmoreP, FernndezFM, HofmannCP, SenzRA. Collocation method for fractional quantum mechanics. J Math Phys. 2010;51(12):122101.; BaleanuD, VacaruSI. Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics. J Math Phys. 2011;52(5):053514.
[28] EslamiM, RezazadehH. The first integral method for Wu‐Zhang system with conformable time‐fractional derivative. CAL. 2016;53(3):475‐485. · Zbl 1434.35273
[29] AminikhahH, SheikhaniAR, RezazadehH. Sub‐equation method for the fractional regularized long‐wave equations with conformable fractional derivatives. Scientia Iranica Trans B, Mech Eng. 2016;23(3):1048‐1054.
[30] JaradF, AbdeljawadT, AlzabutJ. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur Phys J Spec Top. 2017;226(16‐18):3457‐3471.
[31] AbdeljawadT, JaradF, AlzabutJ. Fractional proportional differences with memory. Eur Phys J Spec Top. 2017;226(16‐18):3333‐3354.
[32] AbdeljawadT, Al‐MdallalQM, JaradF. Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos, Solitons Fractals. 2019;119:94‐101. · Zbl 1448.34006
[33] JaradF, UğurluE, AbdeljawadT, BaleanuD. On a new class of fractional operators. Advances in Difference Equations. 2017;2017(1):247. · Zbl 1422.26004
[34] AbdeljawadT. On conformable fractional calculus. J Comput Appl Math. 2015;279:57‐66. · Zbl 1304.26004
[35] AbdeljawadT, AlzabutJ, JaradF. A generalized Lyapunov‐type inequality in the frame of conformable derivatives. Adv Difference Equ. 2017;2017(1):321. · Zbl 1444.34045
[36] Al‐RifaeM, AbdeljawadT. Fundamental Results of Conformable Sturm‐Liouville Eigenvalue Problems. Complexity. 2017;2017:3720471, 7 pages, https://doi.org/10.1155/2017/3720471. · Zbl 1373.34046 · doi:10.1155/2017/3720471
[37] KhalilR, Al‐HoraniM, YousefA, SababhehM. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65‐70. · Zbl 1297.26013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.