×

Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. (English) Zbl 1461.76160

An analytical study of nonlinear Rayleigh-Benard-Taylor convection is made in the presence of variable heat source/ sink and temperature-dependent viscosity. The effect of rotation in the form of Coriolis force is considered in the problem. The basic temperature gradient and viscosity are expressed in the form of Fourier cosine series. The Galerkin weighted residual state technique is used to determine the analytical expression for the thermal Rayleigh number Rayleigh number in terms of the internal Rayleigh number, thermorheological parameter and Taylor number. Local nonlinear stability analysis was carried out from the classical Lorentz model with viscosity and Coriolis force dependent coefficients. A fourth-order Runge-Kutta method was used to solve the nonlinear equation, however, no error analysis was performed. The paper also presents an expression of the Nusselt number at the lower boundary.

MSC:

76E06 Convection in hydrodynamic stability
76E07 Rotation in hydrodynamic stability
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), London: Oxford University Press, London · Zbl 0142.44103
[2] Drazin, PG; Reid, DH, Hydrodynamic Stability (2004), London: Cambridge University Press, London · Zbl 1055.76001
[3] Donnelly, RJ, Experiments on the stability of viscous flow between rotating cylinders-III. Enhancement of stability by modulation, Proc. R. Soc. Lond. Ser. A, 281, 1384, 130-139 (1964)
[4] Venezian, G., Effect of modulation on the onset of thermal convection, J. Fluid Mech., 35, 2, 243-254 (1969) · Zbl 0164.28901 · doi:10.1017/S0022112069001091
[5] Kloosterziel, RC; Carnevale, GF, Closed-form linear stability conditions for rotating Rayleigh-Bénard convection with rigid stress-free upper and lower boundaries, J. Fluid Mech., 480, 25-42 (2003) · Zbl 1063.76548 · doi:10.1017/S0022112002003294
[6] Vanishree, RK; Siddheshwar, PG, Effect of rotation on thermal convection in an anisotropic porous medium with temperature-dependent viscosity, Transp. Porous Med., 81, 1, 73-87 (2010) · doi:10.1007/s11242-009-9385-2
[7] Bhadauria, BS, Effect of temperature modulation on the onset of Darcy convection in a rotating porous medium, J. Porous Med., 11, 4, 361-375 (2008) · doi:10.1615/JPorMedia.v11.i4.30
[8] Bhadauria, BS; Siddheshwar, PG; Suthar, OP, Non-linear thermal instability in a rotating viscous fluid layer under temperature/gravity modulation, ASME J. Heat Transf., 134, 10, 102502 (2012) · doi:10.1115/1.4006868
[9] Desaive, Th; Hennenberg, M.; Lebon, G., Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation, Eur. Phys. J. Condens. Matter Complex Syst., 29, 4, 641-647 (2002) · doi:10.1140/epjb/e2002-00348-9
[10] Qin, Y.; Kaloni, P., Nonlinear stability problem of a rotating porous layer, Quart. Appl. Math., 53, 1, 129-142 (1995) · Zbl 0816.76035 · doi:10.1090/qam/1315452
[11] Vadasz, P., Coriolis effect on gravity-driven convection in a rotating porous layer heated from below, J. Fluid Mech., 376, 351-375 (1998) · Zbl 0943.76033 · doi:10.1017/S0022112098002961
[12] Vadasz, P.; Govender, S., Stability and stationary convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation, Int. J. Eng. Sci., 39, 6, 715-732 (2001) · Zbl 1210.76185 · doi:10.1016/S0020-7225(00)00062-8
[13] Rauscher, JW; Kelly, RE, Effect of modulation on the onset of thermal convection in a rotating fluid, Int. J. Heat Mass Transf., 18, 10, 1216-1217 (1975) · doi:10.1016/0017-9310(75)90144-1
[14] Malashetty, MS; Swamy, M., Effect of thermal modulation on the onset of convection in rotating fluid layer, Int. J. Heat Mass Transf., 51, 2814-2823 (2008) · Zbl 1144.80334 · doi:10.1016/j.ijheatmasstransfer.2007.09.031
[15] Bhattacharjee, JK, Rotating Rayleigh-Bénard convection with modulation, J. Phys. A Math. Gen., 22, 24, L1135 (1989) · Zbl 0706.76053 · doi:10.1088/0305-4470/22/24/001
[16] Om, PS; Bhadauria, BS; Khan, A., Modulated centrifugal convection in a rotating vertical porous layer distant from the axis of rotation, Transp. Porous Med., 79, 2, 255-264 (2009) · doi:10.1007/s11242-008-9315-8
[17] Alsaedi, A.; Muhammad, K.; Ullah, I.; Alsaedi, A.; Asghar, S., Rotating squeezed flow with carbon nano tubes and melting heat, Phys. Scr., 94, 3, 035702 (2019) · doi:10.1088/1402-4896/aaef66
[18] Hayat, T.; Ullah, I.; Alsaedi, A.; Alsulami, H., Numerical simulation for radiated flow in rotating channel with homogeneous-heterogeneous reactions, J. Non-Equlib. Thermodyn., 44, 4, 355-365 (2019) · doi:10.1515/jnet-2018-0102
[19] Straughan, B., Convection with temperature-dependent fluid properties, Appl. Math. Sci., 91, 291-312 (2004) · doi:10.1007/978-0-387-21740-6_16
[20] Straughan, B., Sharp global nonlinear stability for temperature-dependent viscosity convection, Proc. R. Soc. Lond. A., 458, 1773-1782 (2002) · Zbl 1056.76035 · doi:10.1098/rspa.2001.0945
[21] Straughan, B., Convection with Local Thermal Non-equilibrium and Micro Fluid Effects (2015), New York: Springer, New York · Zbl 1325.76005
[22] Hassan, MA; Manabendra, P.; Mohammed, K., Rayleigh-Bénard convection in Herschel-Bulkley fluid, J. Non-Newton. Fluid Mech., 226, 32-45 (2015) · doi:10.1016/j.jnnfm.2015.10.003
[23] Sekhar, GN; Jayalatha, G.; Prakash, R., Convection in variable viscosity ferromagnetic liquids with heat source, Int. J. Appl. Comput. Math., 3, 3539-3559 (2017) · Zbl 1397.76124 · doi:10.1007/s40819-017-0313-9
[24] Siddheshwar, PG; Meenakshi, N., A theoretical study of enhanced heat transfer in nano-liquids with volumetric heat source, J. Appl. Math. Comput., 57, 703-728 (2018) · Zbl 1394.35368 · doi:10.1007/s12190-017-1129-9
[25] Maruthamanikandan, S.; Nisha, MT; Soya, M., Thermorheological and magnetorheological effects on Marangoni-Ferroconvection with internal heat generation, J. Phys. Conf. Ser., 1139, 012024 (2018) · doi:10.1088/1742-6596/1139/1/012024
[26] Siddheshwar, PG; Vanishree, RK; Kanchana, C., Study of Rayleigh-Bénard-Brinkman convection using LTNE model and coupled, real Ginzburg-Landau equations, Int. J. Mech. Mechatron. Eng., 11, 6, 1-8 (2017)
[27] Siddheshwar, PG; Pranesh, S., Effect of a non-uniform temperature gradient on Rayleigh-Bénard convection in a micro polar fluid, Int. J. Eng. Sci., 36, 11, 1183-1196 (1998) · doi:10.1016/S0020-7225(98)00015-9
[28] Siddheshwar, P.G., Chan, A.T.: Thermorheological effect on Bénard and Marangoni convections in anisotropic porous media, hydrodynamics-VI: theory and applications. In: Proc. of six. Inter. Conf., pp. 471-476 (2005)
[29] Bilal, A.; Alsaedi, T.; Hayat, S.; Shehzad, A., Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink, Comput. Math. Math. Phys., 57, 6, 1066-1079 (2017) · Zbl 1457.76029 · doi:10.1134/S0965542517060021
[30] Siddheshwar, PG; Stephen Titus, P., Nonlinear Rayleigh-Bénard convection with variable heat source, ASME J. Heat transf., 135, 122502, 1-12 (2011)
[31] Ramachandramurthy, V.; Aruna, AS, Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source, Mathe. Scie. Int. Res. J., 6, 2, 92-98 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.