Skip to main content
Log in

Thermal Convection in Variable Viscosity Ferromagnetic Liquids with Heat Source

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A linear stability analysis of thermal convection in variable viscosity Newtonian ferromagnetic liquid by considering all possible boundary combinations is studied. The importance of this problem lies in the interesting possibility of regulating convection using heat source (sink). Using Galerkin technique the critical eigenvalue and wave number for stationary convection are obtained. These critical values are then improved upon by the shooting method. The influence of various parameters on the onset of convection has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Dimensionless wave number

\(B_i\) :

Magnetic induction

\(C_{vh}\) :

Specific heat at constant volume and magnetic field

d :

Depth of the liquid layer

\(g_i\) :

Gravitational acceleration (0, 0,−g)

\(H_i\) :

Components of applied magnetic field

\(H_0\) :

Uniform magnetic field

\(k_1 \) :

Thermal conductivity

lm :

Wave numbers

\(M_i\) :

Magnetization

\(M_0\) :

Mean value of magnetization

\(M_1\) :

Buoyancy magnetic number

\(M_3\) :

Non-buoyancy magnetic number

p :

Effective pressure

Pr :

Prandtl number

\(Q_1\) :

Heat source

\(q_i\) :

Components of velocity (u,v,w)

R :

Stationary Rayleigh number

\(R_I\) :

Internal Rayleigh number

t :

Time

T :

Temperature

\(T_0\) :

Constant temperature

V :

Variable viscosity parameter

\(\alpha \) :

Thermal expansion coefficient

\(\delta _T, \delta _H \) :

Small positive constants

\(\Delta \) :

Difference of two values

\(\mu (H, T) \) :

Variable viscosity

\(\mu _0 \) :

Magnetic permeability

\(\rho \) :

Density

\(\rho _0 \) :

Reference density

\(\phi \) :

Magnetic scalar potential

\(\omega \) :

Frequency

b :

Basic state

c :

Critical quantity

0:

Reference value

\('\) :

Dimensional quantity

\(*\) :

Dimensionless quantity

References

  1. Rosensweig, R.E., Kaiser, R., Miskolczy, G.: Viscosity of magnetic fluid in a magnetic field. J. Colloid Interface Sci. 29, 680–686 (1969)

    Article  Google Scholar 

  2. Odenbach, S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter. 16, 1135–1150 (2004)

    Article  Google Scholar 

  3. Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  MATH  Google Scholar 

  4. Gupta, M.D., Gupta, A.S.: Convective instability of a layer of ferromagnetic fluid rotating about a vertical axis. Int. J. Eng. Sci. 17, 271–277 (1979)

    Article  MATH  Google Scholar 

  5. Gotoh, K., Yamada, M.: Thermal convection in a horizontal layer of magnetic fluids. J. Phys. Soc. Jpn. 51, 3042–3048 (1982)

    Article  Google Scholar 

  6. Stiles, P.J., Kagan, M.: Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. JMMM 85, 196–198 (1990)

    Article  Google Scholar 

  7. Maruthamanikandan, S.: Instabilities in ferromagnetic, dielectric and other complexliquids. Thesis, Bangalore University, India (2005)

  8. Sekhar, G.N., Rudraiah, N.: Convection in magnetic fluids with internal heat generation. Trans. ASME J. Heat Trans. 113, 122–127 (1991)

    Article  Google Scholar 

  9. Siddheshwar, P.G.: Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. JMMM 149, 148–150 (1995)

    Article  Google Scholar 

  10. Abraham, A.: Rayleigh–Bénard convection in a micro polar ferromagnetic fluid. Int. J. Eng. Sci. 40, 449–460 (2002)

    Article  MATH  Google Scholar 

  11. Shivakumara, I.S., Rudraiah, N., Nanjundappa, C.E.: Effect of non-uniform basic temperature gradient on Rayleigh–Bénard–Marangoni convection in ferrofluids. JMMM 248, 379–395 (2002)

    Article  Google Scholar 

  12. Siddheshwar, P.G., Abraham, A.: Effect of time-periodic boundary temperatures/body force on Rayleigh–Bénard convection in a ferromagnetic fluid. Acta Mech. 161, 131–150 (2003)

    MATH  Google Scholar 

  13. Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids. Phys. Rev. E 71, 026313–026324 (2004)

    Article  Google Scholar 

  14. Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids under alternating magnetic fields. Phys. Rev. E. 71, 066311–066324 (2005)

    Article  Google Scholar 

  15. Khalid, I.K., Mokhtar, N.F.M., Arifin, N.M.: Uniform solution on the combined effect of magnetic field and internal heat generation on Rayleigh-Bénard convection in micropolar fluid. J. Heat Transf. 135, 102502–102506 (2013)

    Article  Google Scholar 

  16. Sunil, S.A., Sharma, D., Kumar, P.: Effect of magnetic-field dependent viscosity on thermal convection in a ferromagnetic fluid. Chem. Eng. Commun. 195, 571–583 (2008)

    Article  Google Scholar 

  17. Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R.: Bénard–Marangoni ferroconvection with magnetic field dependent viscosity. JMMM 322, 2256–2263 (2010)

    Article  Google Scholar 

  18. Isa, S.P.M., Arifin, N.M., Nazar, R., Saad, M.N.: Effect of non-uniform temperature gradient and magnetic field on onset of Marangoni convection heated from below by a constant heat flux. Appl. Math. Mech. 31, 797–804 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sekhar, G. N. ,Jayalatha, G.: Elastic effects on Rayleigh-Bénard–Marangoni convection in liquids with temperature-dependent viscosity. In: Proceedings of the ASME on Heat transfer, fluid flows and Thermal systems, 9 ISBN 978-07918-3863-1 (2009)

  20. Sekhar, G.N., Jayalatha, G.: Elastic effects on Rayleigh–Bénard convection in liquids with temperature-dependent viscosity. Int. J. Therm.Sci. 49, 67–79 (2010)

    Article  Google Scholar 

  21. Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Surface tension driven convection in viscoelastic liquids with thermorheological effect. Int. Commun. Heat Mass transf. 38, 468–473 (2010a)

    Article  MATH  Google Scholar 

  22. Siddheshwar, P.G., Ramachandramurthy, V., Uma, D.: Rayleigh–Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int. J. Eng. Sci. 49, 1078–1094 (2011)

    Article  Google Scholar 

  23. Sekhar, G.N., Jayalatha, G., Prakash, R.: Thermorheological and magnetorheological effects on Rayleigh–Bénard-Marangoni–Marangoni convection in ferromagnetic liquids with non-uniform basic temperature gradient. In: Proceedings of the ASME on Fluids Engineering System and Technology, vol. 7A. ISBN:978-0-7918-5631-4 (2013)

  24. Prakash, J.: On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer. JMMM 324, 1523–1527 (2012)

    Article  Google Scholar 

  25. Prakash, J., Gupta, S.: On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer. JMMM 345, 201–207 (2013)

    Article  Google Scholar 

  26. Siddheshwar, P.G., Maruthamanikandan, S.: Derivation of various possible boundary conditions for the ferroconvection problem. Private communication (2016)

  27. Siddheshwar, P.G., Revathi, B.R.: Shooting method for good estimates of the eigenvalue in the Rayleigh-Bénard-Marangoni convection Problem with general boundary conditions on velocity and temperature. In: Proceedings of the ASME on Heat Transfer, Gluid Flows and Thermal Systems, vol. 9. ISBN:978-0-7918-4382-6 (2009)

  28. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  29. Platten, J.K., Legros, J.C.: Convection in Liquids. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable suggestion and express sincere gratitude to the respective institutions for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, G.N., Jayalatha, G. & Prakash, R. Thermal Convection in Variable Viscosity Ferromagnetic Liquids with Heat Source. Int. J. Appl. Comput. Math 3, 3539–3559 (2017). https://doi.org/10.1007/s40819-017-0313-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0313-9

Keywords

Navigation