×

Schrödinger operators generated by locally constant functions on the Fibonacci subshift. (English) Zbl 1467.35117

Summary: We investigate the spectral properties of discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the elements of the Fibonacci subshift with a locally constant function. The fundamental trace map formalism for this model is presented and related to its spectral features via an extension of a multitude of works on the classical model, where the sampling function only depends on a single entry of the sequence.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI

References:

[1] Boshernitzan, M., A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J., 52, 723-752 (1985) · Zbl 0602.28009 · doi:10.1215/S0012-7094-85-05238-X
[2] Boshernitzan, M., A condition for unique ergodicity of minimal symbolic flows, Ergodic Theory Dyn. Syst., 12, 425-428 (1992) · Zbl 0756.58030 · doi:10.1017/S0143385700006866
[3] Casdagli, M., Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation, Commun. Math. Phys., 107, 295-318 (1986) · Zbl 0606.39004 · doi:10.1007/BF01209396
[4] Cantat, S., Bers and Hénon, Painlevé and Schrödinger, Duke Math. J., 149, 411-460 (2009) · Zbl 1181.37068 · doi:10.1215/00127094-2009-042
[5] Damanik, D., \( \alpha \)-continuity properties of one-dimensional quasicrystals, Commun. Math. Phys., 192, 169-182 (1998) · Zbl 0907.34073 · doi:10.1007/s002200050295
[6] Damanik, D.; Baake, M.; Moody, RV, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, Directions in Mathematical Quasicrystals, CRM Monograph Series, 277-305 (2000), Providence: American Mathematical Society, Providence · Zbl 0989.81025 · doi:10.1090/crmm/013/10
[7] Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings of Symposium on Pure Mathematics, vol 76, Part 2, pp. 505-538. American Mathematical Society, Providence (2007) · Zbl 1130.82017
[8] Damanik, D., Schrödinger operators with dynamically defined potentials, Ergodic Theory Dyn. Syst., 37, 1681-1764 (2017) · Zbl 1541.81060 · doi:10.1017/etds.2015.120
[9] Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. In: Mathematics of Aperiodic Order. Progress in Mathematical Physics, vol. 309, pp. 307-370. Birkhäuser/Springer, Basel (2015) · Zbl 1378.81031
[10] Damanik, D.; Embree, M.; Gorodetski, A.; Tcheremchantsev, S., The fractal dimension of the spectrum of the Fibonacci Hamiltonian, Commun. Math. Phys., 280, 499-516 (2008) · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[11] Damanik, D.; Fang, L.; Sukhtaiev, S., Zero measure and singular continuous spectra for quantum graphs, Ann. Henri Poincaré, 21, 2167-2191 (2020) · Zbl 1442.05124 · doi:10.1007/s00023-020-00920-6
[12] Damanik, D., Fillman, J.: Spectral Theory of Discrete One-Dimensional Ergodic Schrödinger Operators. monograph in preparation · Zbl 07020564
[13] Damanik, D.; Gorodetski, A., Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian, Nonlinearity, 20, 123-143 (2009) · Zbl 1154.82312 · doi:10.1088/0951-7715/22/1/007
[14] Damanik, D.; Gorodetski, A., The spectrum of the weakly coupled Fibonacci Hamiltonian, Electron. Res. Announc. Math. Sci., 16, 23-29 (2009) · Zbl 1169.82009
[15] Damanik, D.; Gorodetski, A., Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian, Commun. Math. Phys., 305, 221-277 (2011) · Zbl 1232.81016 · doi:10.1007/s00220-011-1220-2
[16] Damanik, D.; Gorodetski, A.; Yessen, W., The Fibonacci Hamiltonian, Invent. Math., 206, 629-692 (2016) · Zbl 1359.81108 · doi:10.1007/s00222-016-0660-x
[17] Damanik, D.; Killip, R.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. III. \( \alpha \)-continuity, Commun. Math. Phys., 212, 191-204 (2000) · Zbl 1045.81024 · doi:10.1007/s002200000203
[18] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues, Commun. Math. Phys., 207, 687-696 (1999) · Zbl 0962.81012 · doi:10.1007/s002200050742
[19] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent, Lett. Math. Phys., 50, 245-257 (1999) · Zbl 1044.81036 · doi:10.1023/A:1007614218486
[20] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals, IV. Quasi-Sturmian potentials, J. d’Analyse Math., 90, 115-139 (2003) · Zbl 1173.81315 · doi:10.1007/BF02786553
[21] Damanik, D.; Lenz, D., A criterion of Boshernitzan and uniform convergence in the multiplicative ergodic theorem, Duke Math. J., 133, 95-123 (2006) · Zbl 1118.37009 · doi:10.1215/S0012-7094-06-13314-8
[22] Damanik, D.; Lenz, D., Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials, J. Math. Pures Appl., 85, 671-686 (2006) · Zbl 1122.47028 · doi:10.1016/j.matpur.2005.11.002
[23] Damanik, D.; Munger, P.; Yessen, WN, Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients. I. The essential support of the measure,, J. Approx. Theory, 173, 56-88 (2013) · Zbl 1283.33005 · doi:10.1016/j.jat.2013.04.001
[24] Iochum, B.; Testard, D., Power law growth for the resistance in the Fibonacci model, J. Stat. Phys., 65, 715-723 (1991) · Zbl 0943.82507 · doi:10.1007/BF01053750
[25] Jitomirskaya, S.; Last, Y., Power-law subordinacy and singular spectra. II. Line operators, Commun. Math. Phys., 211, 643-658 (2000) · Zbl 1053.81031 · doi:10.1007/s002200050830
[26] Johnson, R., Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differ. Equ., 61, 54-78 (1986) · Zbl 0608.34056 · doi:10.1016/0022-0396(86)90125-7
[27] Kotani, S., Jacobi matrices with random potentials taking finitely many values, Rev. Math. Phys., 1, 129-133 (1989) · Zbl 0713.60074 · doi:10.1142/S0129055X89000067
[28] Lenz, D., Singular continuous spectrum of Lebesgue measure zero for one-dimensional quasicrystals, Commun. Math. Phys., 227, 119-130 (2002) · Zbl 1065.47035 · doi:10.1007/s002200200624
[29] Mañé, R., The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.), 20, 1-24 (1990) · Zbl 0723.58029 · doi:10.1007/BF02585431
[30] McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergodic Theory Dyn. Syst. 3, 251-261 (1983); Erratum. Ergodic Theory Dynam. Syst. 5, 319 (1985) · Zbl 0529.58022
[31] Palis, J., Viana, M.: On the continuity of the Hausdorff dimension and limit capacity for horseshoes. In: Dynamical Systems, Lecture Notes in Mathematics 1331, pp. 150-160. Springer, Berlin (1988) · Zbl 0661.58023
[32] Palis, J.; Takens, F., Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors. (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0790.58014
[33] Sütő, A., The spectrum of a quasi-periodic Schrödinger operator, Commun. Math. Phys., 111, 409-415 (1987) · Zbl 0624.34017 · doi:10.1007/BF01238906
[34] Wall, D., Fibonacci series modulo \(m\), Am. Math. Mon., 67, 525-532 (1960) · Zbl 0101.03201 · doi:10.1080/00029890.1960.11989541
[35] Yessen, W., Spectral analysis of tridigonal Fibonacci Hamiltonians, J. Spectr. Theory, 3, 101-128 (2013) · Zbl 1276.47036 · doi:10.4171/JST/39
[36] Yessen, W., On the energy spectrum of 1D quantum Ising quasicrystal, Ann. Henri Poincaré, 15, 2167-2191 (2014) · Zbl 1295.82008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.