×

On spectral inclusion sets and computing the spectra and pseudospectra of bounded linear operators. (English) Zbl 07902929

Summary: In this paper, we derive novel families of inclusion sets for the spectra and pseudospectra of large classes of bounded linear operators, and establish convergence of particular sequences of these inclusion sets to the spectrum or pseudospectrum, as appropriate. Our results apply, in particular, to bounded linear operators on a separable Hilbert space that, with respect to some orthonormal basis, have a representation as a bi-infinite matrix that is banded or band-dominated. More generally, our results apply in cases where the matrix entries themselves are bounded linear operators on some Banach space. In the scalar matrix entry case, we show that our methods, given the input information we assume, lead to a sequence of approximations to the spectrum, each element of which can be computed in finitely many arithmetic operations, so that, with our assumed inputs, the problem of determining the spectrum of a band-dominated operator has solvability complexity index one in the sense of Ben-Artzi et al. (2020). As a concrete and substantial application, we apply our methods to the determination of the spectra of non-self-adjoint bi-infinite tridiagonal matrices that are pseudoergodic in the sense of Davies [Commun. Math. Phys. 216 (2001), 687-704].

MSC:

47A10 Spectrum, resolvent
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
46E40 Spaces of vector- and operator-valued functions
47B80 Random linear operators

Software:

Eigtool

References:

[1] A. Amir, N. Hatano, and D. R. Nelson, Non-Hermitian localization in biological networks. Phys. Rev. E 93 (2016), no. 4, article no. 042310 MR 3704458 · doi:10.1103/physreve.93.042310
[2] J. Ben-Artzi, M. J. Colbrook, A. C. Hansen, O. Nevanlinna, and M. Seidel, Computing spectra -on the solvability complexity index hierarchy and towers of algorithms. [v1] 2015, [v5] 2020, arXiv:1508.03280v5
[3] J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, and M. Seidel, New barriers in complexity theory: On the solvability complexity index and the towers of algorithms. C. R. Math. Acad. Sci. Paris 353 (2015), no. 10, 931-936 Zbl 1343.68078 MR 3411224 · Zbl 1343.68078 · doi:10.1016/j.crma.2015.08.002
[4] S. Bögli, Convergence of sequences of linear operators and their spectra. Integral Equa-tions Operator Theory 88 (2017), no. 4, 559-599 Zbl 1466.47012 MR 3694623 · Zbl 1466.47012 · doi:10.1007/s00020-017-2389-3
[5] S. Bögli, Local convergence of spectra and pseudospectra. J. Spectr. Theory 8 (2018), no. 3, 1051-1098 Zbl 1500.47011 MR 3831156 · Zbl 1500.47011 · doi:10.4171/JST/222
[6] S. Bögli and M. Marletta, Essential numerical ranges for linear operator pencils. IMA J. Numer. Anal. 40 (2020), no. 4, 2256-2308 Zbl 1466.15021 MR 4167046 · Zbl 1466.15021 · doi:10.1093/imanum/drz049
[7] A. Böttcher and S. M. Grudsky, Spectral properties of banded Toeplitz matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005 Zbl 1089.47001 MR 2179973 · Zbl 1089.47001 · doi:10.1137/1.9780898717853
[8] A. Böttcher, S. M. Grudsky, and B. Silbermann, Norms of inverses, spectra, and pseudo-spectra of large truncated Wiener-Hopf operators and Toeplitz matrices. New York J. Math. 3 (1997), 1-31 Zbl 0887.47025 MR 1443134 · Zbl 0887.47025
[9] A. Böttcher and M. Lindner, Pseudospectrum. Scholarpedia 3 (2008), no. 3, article no. 2680 · doi:10.4249/scholarpedia.2680
[10] A. Böttcher and B. Silbermann, Introduction to large truncated Toeplitz matrices. Uni-versitext, Springer, New York, 1999 Zbl 0916.15012 MR 1724795 · Zbl 0916.15012 · doi:10.1007/978-1-4612-1426-7
[11] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators. 2nd edn., Springer Monogr. Math., Springer, Berlin, 2006 Zbl 1098.47002 MR 2223704
[12] J. V. Burke and A. Greenbaum, Characterizations of the polynomial numerical hull of degree k. Linear Algebra Appl. 419 (2006), no. 1, 37-47 Zbl 1106.15018 MR 2263108 · Zbl 1106.15018 · doi:10.1016/j.laa.2006.04.023
[13] S. N. Chandler-Wilde, R. Chonchaiya, and M. Lindner, Eigenvalue problem meets Sier-pinski triangle: computing the spectrum of a non-self-adjoint random operator. Oper. Matrices 5 (2011), no. 4, 633-648 Zbl 1301.47050 MR 2906853 · Zbl 1301.47050 · doi:10.7153/oam-05-46
[14] S. N. Chandler-Wilde, R. Chonchaiya, and M. Lindner, On the spectra and pseudospectra of a class of non-self-adjoint random matrices and operators. Oper. Matrices 7 (2013), no. 4, 739-775 Zbl 1303.47054 MR 3154570 · Zbl 1303.47054 · doi:10.7153/oam-07-43
[15] S. N. Chandler-Wilde, R. Chonchaiya, and M. Lindner, Convergent spectral inclusion sets for banded matrices. Proc. Appl. Math. Mech. 23 (2023), no. 4, article no. e202300016 · doi:10.1002/pamm.202300016
[16] S. N. Chandler-Wilde and E. B. Davies, Spectrum of a Feinberg-Zee random hopping matrix. J. Spectr. Theory 2 (2012), no. 2, 147-179 Zbl 1262.15007 MR 2913876 · Zbl 1262.15007 · doi:10.4171/JST/25
[17] S. N. Chandler-Wilde and R. Hagger, On symmetries of the Feinberg-Zee random hopping matrix. In Recent trends in operator theory and partial differential equations, pp. 51-78, Oper. Theory Adv. Appl. 258, Birkhäuser/Springer, Cham, 2017 Zbl 1367.47048 MR 3643922 · Zbl 1367.47048 · doi:10.1007/978-3-319-47079-5_3
[18] S. N. Chandler-Wilde and M. Lindner, Limit operators, collective compactness, and the spectral theory of infinite matrices. Mem. Amer. Math. Soc. 210 (2011), no. 989, viii+111 Zbl 1219.47001 MR 2790742 · Zbl 1219.47001 · doi:10.1090/S0065-9266-2010-00626-4
[19] S. N. Chandler-Wilde and M. Lindner, Coburn’s lemma and the finite section method for random Jacobi operators. J. Funct. Anal. 270 (2016), no. 2, 802-841 Zbl 1328.65128 MR 3425904 · Zbl 1328.65128 · doi:10.1016/j.jfa.2015.09.019
[20] R. Chonchaiya, Computing the spectra and pseudospectra of non-self-adjoint random operators arising in mathematical physics. Ph.D. thesis, University of Reading, UK, 2010
[21] M. J. Colbrook, Pseudoergodic operators and periodic boundary conditions. Math. Comp. 89 (2020), no. 322, 737-766 Zbl 1481.47004 MR 4044449 · Zbl 1481.47004 · doi:10.1090/mcom/3475
[22] M. J. Colbrook, On the computation of geometric features of spectra of linear operators on Hilbert spaces. Found. Comput. Math. (2022) · Zbl 07875095 · doi:10.1007/s10208-022-09598-0
[23] M. J. Colbrook, Infinite-dimensional spectral computations: Foundations, algorithms, and modern applications. Ph.D. thesis, University of Cambridge, UK, 2024
[24] M. J. Colbrook and A. C. Hansen, On the infinite-dimensional QR algorithm. Numer. Math. 143 (2019), no. 1, 17-83 Zbl 1530.65055 MR 3987167 · Zbl 1530.65055 · doi:10.1007/s00211-019-01047-5
[25] M. J. Colbrook and A. C. Hansen, The foundations of spectral computations via the solvab-ility complexity index hierarchy. J. Eur. Math. Soc. (JEMS) 25 (2023), no. 12, 4639-4718 Zbl 07774915 MR 4662300 · Zbl 07774915 · doi:10.4171/jems/1289
[26] M. J. Colbrook, B. Roman, and A. C. Hansen, How to compute spectra with error control. Phys. Rev. Lett. 122 (2019), no. 25, article no. 250201 MR 3980052 · doi:10.1103/PhysRevLett.122.250201
[27] D. Damanik, M. Embree, and A. Gorodetski, Spectral properties of Schrödinger operators arising in the study of quasicrystals. In Mathematics of aperiodic order, pp. 307-370, Progr. Math. 309, Birkhäuser/Springer, Basel, 2015 Zbl 1378.81031 MR 3381485 · Zbl 1378.81031 · doi:10.1007/978-3-0348-0903-0_9
[28] D. Damanik, A. Gorodetski, and W. Yessen, The Fibonacci Hamiltonian. Invent. Math. 206 (2016), no. 3, 629-692 Zbl 1359.81108 MR 3573970 · Zbl 1359.81108 · doi:10.1007/s00222-016-0660-x
[29] E. B. Davies, Spectral enclosures and complex resonances for general self-adjoint operat-ors. LMS J. Comput. Math. 1 (1998), 42-74 Zbl 0931.47021 MR 1635727 · Zbl 0931.47021 · doi:10.1112/S1461157000000140
[30] E. B. Davies, Spectral properties of random non-self-adjoint matrices and operators. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2005, 191-206 Zbl 1014.47002 MR 1843941 · Zbl 1014.47002 · doi:10.1098/rspa.2000.0662
[31] E. B. Davies, Spectral theory of pseudo-ergodic operators. Comm. Math. Phys. 216 (2001), no. 3, 687-704 Zbl 1044.47031 MR 1815722 · Zbl 1044.47031 · doi:10.1007/s002200000352
[32] E. B. Davies, Spectral bounds using higher-order numerical ranges. LMS J. Comput. Math. 8 (2005), 17-45 Zbl 1119.47004 MR 2123129 · Zbl 1119.47004 · doi:10.1112/S1461157000000887
[33] E. B. Davies, Linear operators and their spectra. Cambridge Stud. Adv. Math. 106, Cam-bridge University Press, Cambridge, 2007 Zbl 1138.47001 MR 2359869 · doi:10.1017/CBO9780511618864
[34] E. B. Davies and M. Plum, Spectral pollution. IMA J. Numer. Anal. 24 (2004), no. 3, 417-438 Zbl 1062.65056 MR 2068830 · Zbl 1062.65056 · doi:10.1093/imanum/24.3.417
[35] P. J. Davis, Circulant matrices. pure and applied mathematics. Wiley-Intersci. Publ., John Wiley, New York-Chichester-Brisbane, 1979 Zbl 0418.15017 MR 0543191 · Zbl 0418.15017
[36] M. M. Day, Some more uniformly convex spaces. Bull. Amer. Math. Soc. 47 (1941), 504-507 Zbl 0027.11003 MR 0004068 · JFM 67.0402.03 · doi:10.1090/S0002-9904-1941-07499-9
[37] F. O. Farid and P. Lancaster, Spectral properties of diagonally dominant infinite matrices. I. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 301-314 Zbl 0681.47011 MR 1007527 · Zbl 0681.47011 · doi:10.1017/S0308210500018576
[38] F. O. Farid and P. Lancaster, Spectral properties of diagonally dominant infinite matrices. II. Linear Algebra Appl. 143 (1991), 7-17 Zbl 0745.47017 MR 1077721 · Zbl 0745.47017 · doi:10.1016/0024-3795(91)90003-F
[39] J. Feinberg and A. Zee, Non-Hermitean localization and de-localization. Phys. Rev. E 59 (1999), no. 6, 6433-6443 · doi:10.1103/PhysRevE.59.6433
[40] J. Feinberg and A. Zee, Spectral curves of non-Hermitian Hamiltonians. Nuclear Phys. B 552 (1999), no. 3, 599-623 Zbl 0944.82017 MR 1704620 · Zbl 0944.82017 · doi:10.1016/S0550-3213(99)00246-1
[41] D. G. Feingold and R. S. Varga, Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem. Pacific J. Math. 12 (1962), 1241-1250 Zbl 0109.24802 MR 0151473 · Zbl 0109.24802 · doi:10.2140/pjm.1962.12.1241
[42] M. Fiedler and V. Pták, Generalized norms of matrices and the location of the spectrum. Czechoslovak Math. J. 12 (1962), no. 87, 558-571 Zbl 0116.25302 MR 0146667 · Zbl 0116.25302 · doi:10.21136/CMJ.1962.100540
[43] A. Frommer, B. Jacob, L. Vorberg, C. Wyss, and I. Zwaan, Pseudospectrum enclosures by discretization. Integral Equations Operator Theory 93 (2021), no. 1, article no. 9 Zbl 1496.47009 MR 4208116 · Zbl 1496.47009 · doi:10.1007/s00020-020-02621-5
[44] F. Gabel, D. Gallaun, J. Grossmann, M. Lindner, and R. Ukena, Spectral approximation of generalized Schrödinger operators via approximation of subwords. Complex Anal. Oper. Theory 18 (2024), no. 1, article no. 7 Zbl 07785407 MR 4673709 · Zbl 07785407 · doi:10.1007/s11785-023-01448-3
[45] S. Gershgorin, über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 7 (1931), no. 6, 749-754 Zbl 0003.00102 · Zbl 0003.00102
[46] J. Globevnik, Norm-constant analytic functions and equivalent norms. Illinois J. Math. 20 (1976), no. 3, 503-506 Zbl 0322.30040 MR 0448044 · Zbl 0322.30040 · doi:10.1215/ijm/1256049790
[47] J. Globevnik and I. Vidav, On operator-valued analytic functions with constant norm. J. Functional Analysis 15 (1974), 394-403 Zbl 0291.47003 MR 0346566 · Zbl 0291.47003 · doi:10.1016/0022-1236(74)90030-5
[48] I. Y. Goldsheid and B. A. Khoruzhenko, Distribution of eigenvalues in non-Hermitian Anderson models. Phys. Rev. Lett. 80 (1998), no. 13, 2897-2900 · doi:10.1103/PhysRevLett.80.2897
[49] I. Y. Goldsheid and B. A. Khoruzhenko, Eigenvalue curves of asymmetric tridiagonal random matrices. Electron. J. Probab. 5 (2000), article no. 16 Zbl 0983.82006 MR 1800072 · Zbl 0983.82006 · doi:10.1214/EJP.v5-72
[50] G. H. Golub and C. F. Van Loan, Matrix computations. 3rd edn., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 1996 Zbl 0865.65009 MR 1417720 · Zbl 0865.65009
[51] R. Hagen, S. Roch, and B. Silbermann, C -algebras and numerical analysis. Monogr. Textbooks Pure Appl. Math. 236, Marcel Dekker, New York, 2001 Zbl 0964.65055 MR 1792428 · Zbl 0964.65055 · doi:10.1201/9781482270679
[52] R. Hagger, Symmetries of the Feinberg-Zee random hopping matrix. Random Matrices Theory Appl. 4 (2015), no. 4, article no. 1550016 Zbl 1408.47010 MR 3418845 · Zbl 1408.47010 · doi:10.1142/S2010326315500161
[53] R. Hagger, On the spectrum and numerical range of tridiagonal random operators. J. Spectr. Theory 6 (2016), no. 2, 215-266 Zbl 1443.47043 MR 3485943 · Zbl 1443.47043 · doi:10.4171/JST/124
[54] R. Hagger, M. Lindner, and M. Seidel, Essential pseudospectra and essential norms of band-dominated operators. J. Math. Anal. Appl. 437 (2016), no. 1, 255-291 Zbl 1336.47036 MR 3451966 · Zbl 1336.47036 · doi:10.1016/j.jmaa.2015.11.060
[55] A. C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254 (2008), no. 8, 2092-2126 Zbl 1138.47002 MR 2402104 · Zbl 1138.47002 · doi:10.1016/j.jfa.2008.01.006
[56] A. C. Hansen, On the solvability complexity index, the n-pseudospectrum and approxim-ations of spectra of operators. J. Amer. Math. Soc. 24 (2011), no. 1, 81-124 Zbl 1210.47013 MR 2726600 · Zbl 1210.47013 · doi:10.1090/S0894-0347-2010-00676-5
[57] N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechan-ics. Phys. Rev. Lett. 77 (1996), no. 3, 570-573 · doi:10.1103/PhysRevLett.77.570
[58] N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56 (1997), no. 14, 8651-8673 · doi:10.1103/PhysRevB.56.8651
[59] N. Hatano and D. R. Nelson, Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B 58 (1998), no. 13, 8384-8390 · doi:10.1103/PhysRevB.58.8384
[60] F. Hausdorff, Set theory. 2nd edn., Chelsea, New York, 1962 Zbl 0488.04001 MR 0141601
[61] E. Heinemeyer, M. Lindner, and R. Potthast, Convergence and numerics of a multisec-tion method for scattering by three-dimensional rough surfaces. SIAM J. Numer. Anal. 46 (2008), no. 4, 1780-1798 Zbl 1173.65070 MR 2399395 · Zbl 1173.65070 · doi:10.1137/060673321
[62] D. E. Holz, H. Orland, and A. Zee, On the remarkable spectrum of a non-Hermitian ran-dom matrix model. J. Phys. A 36 (2003), no. 12, 3385-3400 Zbl 1038.15016 MR 1986425 · Zbl 1038.15016 · doi:10.1088/0305-4470/36/12/330
[63] V. G. Kurbatov, Functional-differential operators and equations. Math. Appl. 473, Kluwer, Dordrecht, 1999 Zbl 0926.34053 MR 1702280 · Zbl 0926.34053
[64] M. Lindner, Infinite matrices and their finite sections. An introduction to the limit operator method. Front. Math., Birkhäuser, Basel, 2006 Zbl 1107.47001 MR 2253942
[65] M. Lindner, A note on the spectrum of bi-infinite bi-diagonal random matrices. Anal. Appl. (Singap.) 7 (2009), no. 3, 269-278 Zbl 1181.47042 MR 2542739 · Zbl 1181.47042 · doi:10.1142/S0219530509001396
[66] M. Lindner and T. Schmidt, Recycling Givens rotations for the efficient approximation of pseudospectra of band-dominated operators. Oper. Matrices 11 (2017), no. 4, 1171-1196 Zbl 1378.65112 MR 3711439 · Zbl 1378.65112 · doi:10.7153/oam-2017-11-80
[67] M. Lindner and M. Seidel, An affirmative answer to a core issue on limit operators. J. Funct. Anal. 267 (2014), no. 3, 901-917 Zbl 1292.47020 MR 3212726 · Zbl 1292.47020 · doi:10.1016/j.jfa.2014.03.002
[68] C. Martínez, Spectral properties of tridiagonal operators. Ph.D. thesis, Kings College London, UK, 2005
[69] C. Martinez, Spectral estimates for the one-dimensional non-self-adjoint Anderson model. J. Operator Theory 56 (2006), no. 1, 59-88 Zbl 1134.47304 MR 2261612 · Zbl 1134.47304
[70] D. R. Nelson and N. M. Shnerb, Non-Hermitian localization and population biology. Phys. Rev. E 58 (1998), no. 2, 1383-1403 MR 1637117 · doi:10.1103/PhysRevE.58.1383
[71] O. Nevanlinna, Convergence of iterations for linear equations. Lectures Math. ETH Zürich, Birkhäuser, Basel, 1993 Zbl 0846.47008 MR 1217705 · Zbl 0846.47008 · doi:10.1007/978-3-0348-8547-8
[72] A. M. Ostrowski, On some metrical properties of operator matrices and matrices parti-tioned into blocks. J. Math. Anal. Appl. 2 (1961), 161-209 Zbl 0101.25504 MR 0130561 · Zbl 0101.25504 · doi:10.1016/0022-247X(61)90030-0
[73] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators. Grundlehren Math. Wiss. 297, Springer, Berlin, 1992 Zbl 0752.47002 MR 1223779 · Zbl 0752.47002
[74] V. Rabinovich, S. Roch, and B. Silbermann, Limit operators and their applications in operator theory. Oper. Theory Adv. Appl. 150, Birkhäuser, Basel, 2004 Zbl 1077.47002 MR 2075882 · doi:10.1007/978-3-0348-7911-8
[75] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices. Linear Algebra Appl. 162/164 (1992), 153-185 Zbl 0748.15010 MR 1148398 · Zbl 0748.15010 · doi:10.1016/0024-3795(92)90374-J
[76] H. N. Salas, Gershgorin’s theorem for matrices of operators. Linear Algebra Appl. 291 (1999), no. 1-3, 15-36 Zbl 1018.47004 MR 1685637 · Zbl 1018.47004 · doi:10.1016/S0024-3795(98)10219-7
[77] T. Schmidt, Approximation of spectra and pseudospectra on a Hilbert space. Ph.D. thesis, TU Hamburg, Germany, 2017 Zbl 1381.46001
[78] M. Seidel, On .N; /-pseudospectra of operators on Banach spaces. J. Funct. Anal. 262 (2012), no. 11, 4916-4927 Zbl 1307.47005 MR 2913691 · Zbl 1307.47005 · doi:10.1016/j.jfa.2012.03.019
[79] M. Seidel and B. Silbermann, Finite sections of band-dominated operators-norms, con-dition numbers and pseudospectra. In Operator theory, pseudo-differential equations, and mathematical physics, pp. 375-390, Oper. Theory Adv. Appl. 228, Birkhäuser/Springer, Basel, 2013 Zbl 1280.47022 MR 3025505 · Zbl 1280.47022 · doi:10.1007/978-3-0348-0537-7_19
[80] E. Shargorodsky, On the level sets of the resolvent norm of a linear operator. Bull. Lond. Math. Soc. 40 (2008), no. 3, 493-504 Zbl 1147.47007 MR 2418805 · Zbl 1147.47007 · doi:10.1112/blms/bdn038
[81] E. Shargorodsky, On the definition of pseudospectra. Bull. Lond. Math. Soc. 41 (2009), no. 3, 524-534 Zbl 1207.47005 MR 2506836 · Zbl 1207.47005 · doi:10.1112/blms/bdp031
[82] E. Shargorodsky and S. Shkarin, The level sets of the resolvent norm and convexity prop-erties of Banach spaces. Arch. Math. (Basel) 93 (2009), no. 1, 59-66 Zbl 1179.47002 MR 2520644 · Zbl 1179.47002 · doi:10.1007/s00013-009-0001-z
[83] P. N. Shivakumar, J. J. Williams, and N. Rudraiah, Eigenvalues for infinite matrices. Linear Algebra Appl. 96 (1987), 35-63 Zbl 0627.15006 MR 0910985 · Zbl 0627.15006 · doi:10.1016/0024-3795(87)90335-1
[84] L. N. Trefethen, M. Contedini, and M. Embree, Spectra, pseudospectra, and localization for random bidiagonal matrices. Comm. Pure Appl. Math. 54 (2001), no. 5, 595-623 Zbl 1025.15034 MR 1811128 · Zbl 1025.15034 · doi:10.1002/cpa.4.abs
[85] L. N. Trefethen and M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators. Princeton University Press, Princeton, NJ, 2005 Zbl 1085.15009 MR 2155029 · doi:10.1515/9780691213101
[86] R. S. Varga, Geršgorin and his circles. Springer Ser. Comput. Math. 36, Springer, Berlin, 2004 Zbl 1057.15023 MR 2093409 · doi:10.1007/978-3-642-17798-9
[87] B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces. Math. Methods Appl. Sci. 26 (2003), no. 6, 463-488 Zbl 1016.78006 MR 1965717 · Zbl 1016.78006 · doi:10.1002/mma.361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.