×

Gershgorin’s theorem for matrices of operators. (English) Zbl 1018.47004

Summary: Let \(A= (A_{ij})\) be an \(n\times n\) matrix of operators acting on the Banach space \(X= X_1\oplus X_2\oplus\cdots\oplus X_n\) endowed with the \(\|\cdot\|_\infty\) norm. The Gershgorin circle theorem extends to this setting as follows: If \[ G_i= \sigma(A_{ii})\cup \Biggl\{\lambda: \lambda\not\in \sigma(A_{ii})\text{ and }\|(\lambda- A_{ii})^{-1}\|^{-1}\leq \sum^n_{j=1, i\neq j}\|A_{ij}\|\Biggr\}, \] then \[ \sigma(A)\subset \bigcup^n_{i=1} G_i. \] Moreover, assume that \(J\) is a proper nonempty subset of \(\{1,2,\dots,n\}\), if \(\bigcup_{i\in J} G_i\) and \(\bigcup_{i\notin J} G_i\) are disjoint, then there exist invariant subspaces \(Y_1\) and \(Y_2\) for \(A\) such that \[ \sigma(A|_{Y_1})\subset \bigcup_{i\in J} G_i\quad\text{and}\quad \sigma(A|_{Y_2})\subset \bigcup_{i\notin J} G_i, \] where \(Y_1\simeq \bigoplus_{i\in J} X_i\) and \(Y_2\simeq \bigoplus_{i\ni J}X_i\).
The notion of minimal Gershgorin sets that follows is one possible generalization of what Varga studied in the scalar case. (For partitioned matrices he used a more refined generalization.) For any positive \(n\)-dimensional vector \({\mathbf x}= (x_1,\dots, x_n)\), the operator \[ ((1/x_1)I\oplus\cdots\oplus (1/x_n)I) A(x_1 I\oplus\cdots\oplus x_n I)= A_{{\mathbf x}} \] is similar to \(A\). Let \[ G_{i,{\mathbf x}}(A)= \sigma(A_{ii})\cup \Biggl\{z: z\not\in \sigma(A_{ii})\text{ and }\|(A_{ii}- z)^{-1}\|^{-1}\leq \sum^n_{j=1,\;j\neq i}(x_j/x_i)\|A_{ij}\|\Biggr\}. \] The minimal Gershgorin set \(G(A)\) is defined to be \[ G(A)= \bigcap_{{\mathbf x}> 0} \bigcup^n_{i=1} G_{i,{\mathbf x}}(A). \] As in the scalar case, it has the property that \[ \sigma(\Omega_A)= \bigcup_{B\in\Omega_A} \sigma(B)\subset G(A), \] where \[ \Omega_A= \{B= (B_{ii}): B_{ii}= A_{ii}\text{ for }i= 1,\dots, n\text{ and }\|B_{ij}\|=\|A_{ij}\|\text{ if }i\neq j\}. \] It is proved that if each \(X_i\) is a Hilbert space and each \(A_{ii}\) is normal, \(i= 1,\dots, n\), then \[ \partial G(A)\subset \overline{\sigma(\Omega_A)}, \] where \(\partial G(A)\) denotes the boundary of \(G(A)\). It is worth remarking that the closure of \(\sigma(\Omega_A)\) is necessary.

MSC:

47A10 Spectrum, resolvent
47A15 Invariant subspaces of linear operators
Full Text: DOI

References:

[1] Fan, K., Note of circular disks containing the eigenvalues of a matrix, Duke Math. J., 25, 441-445 (1958) · Zbl 0081.25202
[2] Feingold, D. G.; Varga, R. S., Block diagonally dominant matrices and generalization of the Gershgorin circle theorem, Pacific J. Math., 12, 1241-1250 (1962) · Zbl 0109.24802
[3] Brauer, A., Limits for the characteristic roots of matrices IV., Duke Math. J., 19, 75-91 (1952) · Zbl 0046.01202
[4] Hannani, H.; Netanyahu, E.; Reichaw, M., Eigenvalues of infinite matrices, Colloquium Math, XIX, 89-101 (1968) · Zbl 0155.06401
[5] Shivakumar, P. N.; Williams, J. J.; Rudraiah, N., Eigenvalues for infinite matrices, Linear Algebra Appl., 96, 35-63 (1987) · Zbl 0627.15006
[6] Farid, F. O.; Lancaster, P., Spectral properties of diagonally dominant infinite matrices I, Proc. Roy. Soc. Edinburgh A, 111, 301-314 (1988) · Zbl 0681.47011
[7] Farid, F. O.; Lancaster, P., Spectral properties of diagonally dominant infinite matrices II, Linear Algebra Appl., 143, 7-17 (1991) · Zbl 0745.47017
[8] Rudin, W., (Functional Analysis (1991), MCGraw Hill) · Zbl 0867.46001
[9] Kato, T., (Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin) · Zbl 0148.12601
[10] Varga, R. S., Minimal Gershgorin sets, Pacific J. Math., 15, 2, 719-729 (1965) · Zbl 0168.02904
[11] Varga, R. S., Minimal Gershgorin sets. for partitioned matrices, SIAM J. Num. Anal., 7, 4, 493-507 (1970) · Zbl 0221.15015
[12] Gohberg, I. C.; Krein, M. G., Introduction to the theory of linear non-self adjoint operators, Translations Math. monograph AMS, 18 (1969) · Zbl 0181.13504
[13] Herrero, D. A., Approximation of Hilbert spaces operator, Research Notes Math, Pitman, vol 1, 72 (1982) · Zbl 0494.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.