×

Coupled fluid and energy flow in fabrication of microstructured optical fibres. (English) Zbl 1419.76148

Summary: We consider the role of heating and cooling in the steady drawing of a long and thin viscous thread with an arbitrary number of internal holes of arbitrary shape. The internal holes and the external boundary evolve as a result of the axial drawing and surface-tension effects. The heating and cooling affects the evolution of the thread because both the viscosity and surface tension of the thread are assumed to be functions of the temperature. We use asymptotic techniques to show that, under a suitable transformation, this complicated three-dimensional free boundary problem can be formulated in such a way that the transverse aspect of the flow can be reduced to the solution of a standard Stokes flow problem in the absence of axial stretching. The solution of this standard problem can then be substituted into a system of three ordinary differential equations that completely determine the flow. We use this approach to develop a very simple numerical method that can determine the way that thermal effects impact on the drawing of threads by devices that either specify the fibre tension or the draw ratio. We also develop a numerical method to solve the inverse problem of determining the initial cross-sectional geometry, draw tension and, importantly, heater temperature to obtain a desired cross-sectional shape and change in cross-sectional area at the device exit. This precisely allows one to determine the pattern of air holes in the preform that will achieve the desired hole pattern in the stretched fibre.

MSC:

76D08 Lubrication theory
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids
78A15 Electron optics
Full Text: DOI

References:

[1] Boyd, K., Ebendorff-Heidepriem, H., Monro, T. M. & Munch, J.2012Surface tension and viscosity measurement of optical glasses using a scanning CO_2 laser. Opt. Mater. Express2 (8), 1101-1110.
[2] Bradshaw-Hajek, B. H., Stokes, Y. M. & Tuck, E. O.2004Computation of extensional fall of slender viscous drops by a one-dimensional Eulerian method. SIAM J. Appl. Maths.67, 1166-1182. · Zbl 1134.35085
[3] Buchak, P., Crowdy, D. G., Stokes, Y. M. & Ebendorff-Heidepriem, H.2015Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech.778, 5-38. · Zbl 1382.76088
[4] Chen, M. J., Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H.2015Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech.783, 137-165. · Zbl 1382.76073
[5] Cummings, L. J. & Howell, P. D.1999On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech.389, 361-389. · Zbl 0953.76022
[6] Denn, M. M.1980Continuous drawing of liquids to form fibers. Annu. Rev. Fluid Mech.12, 365-387. · Zbl 0466.76010
[7] Dewynne, J. N., Howell, P. D. & Wilmott, P.1994Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths47, 541-555. · Zbl 0820.76035
[8] Dewynne, J. N., Ockendon, J. R. & Wilmott, P.1992A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech.244, 323-338. · Zbl 0760.76020
[9] Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. A.2002The mathematical modelling of capillary drawing for holey fibre manufacture. J. Engng Maths43, 201-227. · Zbl 1178.76134
[10] Forest, M. G. & Zhou, H.2001Unsteady analysis of thermal glass fiber drawing processes. Eur. J. Appl. Maths12, 479-496. · Zbl 1055.76020
[11] Griffiths, I. M. & Howell, P. D.2007The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech.593, 181-208. · Zbl 1128.76020
[12] Griffiths, I. M. & Howell, P. D.2008Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech.605, 181-206. · Zbl 1145.76018
[13] Gupta, G. & Schultz, W. W.1998Non-isothermal flows of Newtonian slender glass fibers. Intl J. Non-Linear Mech.33, 151-163. · Zbl 0885.76004
[14] He, D., Wylie, J. J., Huang, H. & Miura, R. M.2016Extension of a viscous thread with temperature-dependent viscosity and surface tension. J. Fluid Mech.800, 720-752. · Zbl 1445.76040
[15] Kaye, A.1991Convected coordinates and elongational flow. J. Non-Newtonian Fluid Mech.40, 55-77. · Zbl 0726.76004
[16] Matovich, M. A. & Pearson, J. R. A.1969Spinning a molten threadline. I&EC Fundamentals8, 512-520.
[17] Modest, M. F.2013Radiative Heat Transfer, 3rd edn. Academic Press.
[18] Scherer, G. W.1992Editorial comments on a paper by Gordon S. Fulcher. J. Am. Ceram. Soc.75, 1060-1062.
[19] Shah, Y. T. & Pearson, J. R. A.1972aOn the stability of nonisothermal fibre spinning. Ind. Engng Chem. Fundam.11, 145-149.
[20] Shah, Y. T. & Pearson, J. R. A.1972bOn the stability of nonisothermal fibre spinning – general case. Ind. Engng Chem. Fundam.11, 150-153.
[21] Shartsis, L. & Spinner, S.1951Surface tension of molten alkali silicates. J. Res. Natl. Bur. Stand.46, 385-390.
[22] Stokes, Y. M., Bradshaw-Hajek, B. H. & Tuck, E. O.2011Extensional flow at low Reynolds number with surface tension. J. Engng Maths70, 321-331. · Zbl 1254.76039
[23] Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H.2014Drawing of micro-structured optical fibres: circular and non-circular tubes. J. Fluid Mech.755, 176-203. · Zbl 1330.76043
[24] Stokes, Y. M. & Tuck, E. O.2004The role of inertia in extensional fall of a viscous drop. J. Fluid Mech.498, 205-225. · Zbl 1065.76044
[25] Stokes, Y. M., Tuck, E. O. & Schwartz, L. W.2000Extensional fall of a very viscous fluid drop. Q. J. Mech. Appl. Maths53, 565-582. · Zbl 0969.76019
[26] Suman, B. & Kumar, S.2009Draw ratio enhancement in nonisothermal melt spinning. AIChE J.55, 581-593.
[27] Taroni, M., Breward, C. J. W., Cummings, L. J. & Griffiths, I. M.2013Asymptotic solutions of glass temperature profiles during steady optical fibre drawing. J. Engng Maths80, 1-20. · Zbl 1367.76019
[28] Tronnolone, H., Stokes, Y. M. & Ebendorff-Heidepriem, H.2017Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity. J. Fluid Mech.810, 127-154.
[29] Tronnolone, H., Stokes, Y. M., Foo, H. T. C. & Ebendorff-Heidepriem, H.2016Gravitational extension of a fluid cylinder with internal structure. J. Fluid Mech.790, 308-338. · Zbl 1382.76051
[30] Wylie, J. J., Bradshaw-Hajek, B. H. & Stokes, Y. M.2016The evolution of a viscous thread pulled with a prescribed speed. J. Fluid Mech.795, 380-408. · Zbl 1359.76092
[31] Wylie, J. J. & Huang, H.2007Extensional flows with viscous heating. J. Fluid Mech.571, 359-370. · Zbl 1105.76023
[32] Wylie, J. J., Huang, H. & Miura, R. M.2007Thermal instability in drawing viscous threads. J. Fluid Mech.570, 1-16. · Zbl 1105.76029
[33] Wylie, J. J., Huang, H. & Miura, R. M.2011Stretching of viscous threads at low Reynolds numbers. J. Fluid Mech.683, 212-234. · Zbl 1241.76151
[34] Wylie, J. J., Huang, H. & Miura, R. M.2015Asymptotic analysis of a viscous thread extending under gravity. Physica D313, 51-60. · Zbl 1364.76049
[35] Yarin, A. L.1986Effect of heat removal on nonsteady regimes of fiber formation. J. Engng Phys.50, 569-575.
[36] Yarin, A. L., Gospodinov, P. & Roussinov, V. I.1994Stability loss and sensitivity in hollow fiber drawing. Phys. Fluids6 (4), 1454-1463. · Zbl 0829.76039
[37] Yarin, A. L., Rusinov, V. I., Gospodinov, P. & St. Radev1989Quasi one-dimensional model of drawing of glass micro capillaries and approximate solutions. Theor. Appl. Mech.20 (3), 55-62. · Zbl 0707.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.