×

Microstructured optical fibre drawing with active channel pressurisation. (English) Zbl 1382.76073

Summary: The use of channel pressurisation in drawing microstructured optical fibres (MOFs) potentially allows for fine control of the internal structure of the fibre. By applying extra pressure inside the channels it is possible to counteract the effect of surface tension which would otherwise act to close the channels in the fibre as it is drawn. This paper extends the modelling approach of Y. M. Stokes et al. [J. Fluid Mech. 755, 176–203 (2014; Zbl 1330.76043)] to include channel pressurisation. This approach treats the problem as two submodels for the flow, one in the axial direction along the fibre and another in the plane perpendicular to that direction. In the absence of channel pressurisation these models decoupled and were solved independently; we show that they become fully coupled when the internal channels are pressurised. The fundamental case of a fibre with an annular cross-section (containing one central channel) will be examined in detail. In doing this we consider both a forward problem to determine the shape of fibre from a known preform and an inverse problem to design a preform such that when drawn it will give a desired fibre geometry. Criteria on the pressure corresponding to fibre explosion and closure of the channel will be given that represent an improvement over similar criteria in the literature. A comparison between our model and a recent experiment is presented to demonstrate the effectiveness of the modelling approach. We make use of some recent work by P. Buchak et al. [J. Fluid Mech. 778, 5–38 (2015; Zbl 1382.76088)] to examine more complicated fibre geometries, where the cross-sectional shape of the internal channels is assumed to be elliptical and multiple channels are present. The examples presented here demonstrate the versatility of our modelling approach, where the subtleties of the interaction between surface tension and pressurisation can be revealed even for complex patterns of cross-sectional channels.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids
76D08 Lubrication theory

References:

[1] DOI: 10.1017/jfm.2011.259 · Zbl 1241.76151 · doi:10.1017/jfm.2011.259
[2] Yarin, Free Liquid Jets and Films: Hydrodynamics and Rheology (1993) · Zbl 0872.76002
[3] DOI: 10.1109/JLT.2007.916489 · doi:10.1109/JLT.2007.916489
[4] DOI: 10.1007/s10665-013-9623-z · Zbl 1367.76019 · doi:10.1007/s10665-013-9623-z
[5] DOI: 10.1093/qjmam/53.4.565 · Zbl 0969.76019 · doi:10.1093/qjmam/53.4.565
[6] DOI: 10.1017/jfm.2014.408 · Zbl 1330.76043 · doi:10.1017/jfm.2014.408
[7] DOI: 10.1023/A:1020328606157 · Zbl 1178.76134 · doi:10.1023/A:1020328606157
[8] DOI: 10.1017/S0022112092003094 · Zbl 0760.76020 · doi:10.1017/S0022112092003094
[9] DOI: 10.1364/OE.15.017819 · doi:10.1364/OE.15.017819
[10] DOI: 10.1093/qjmam/47.4.541 · Zbl 0820.76035 · doi:10.1093/qjmam/47.4.541
[11] DOI: 10.1016/j.yofte.2010.09.010 · doi:10.1016/j.yofte.2010.09.010
[12] DOI: 10.1017/S0022112099005030 · Zbl 0953.76022 · doi:10.1017/S0022112099005030
[13] DOI: 10.1146/annurev.matsci.36.111904.135316 · doi:10.1146/annurev.matsci.36.111904.135316
[14] DOI: 10.1364/OME.4.000029 · doi:10.1364/OME.4.000029
[15] DOI: 10.1017/S0022112003007559 · Zbl 1063.76101 · doi:10.1017/S0022112003007559
[16] Griffiths, J. Fluid Mech. 605 pp 181– (2008)
[17] DOI: 10.1364/OME.3.000346 · doi:10.1364/OME.3.000346
[18] DOI: 10.1017/S0022112007008683 · Zbl 1128.76020 · doi:10.1017/S0022112007008683
[19] DOI: 10.1017/jfm.2015.337 · Zbl 1382.76088 · doi:10.1017/jfm.2015.337
[20] DOI: 10.1364/OME.2.001101 · doi:10.1364/OME.2.001101
[21] DOI: 10.1063/1.868260 · Zbl 0829.76039 · doi:10.1063/1.868260
[22] DOI: 10.1017/S0022112088001454 · Zbl 0642.76116 · doi:10.1017/S0022112088001454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.