×

Emergence of stripe-core mixed spiral chimera on a spherical surface of nonlocally coupled oscillators. (English) Zbl 1483.34051

The authors consider the model \[ \frac{\partial\psi(\mathbf{r},t)}{\partial t}=\omega+\frac{1}{4\pi}\int_{\mathbb{S}^2}G(\mathbf{r},\mathbf{r}')\sin{[\psi(\mathbf{r}',t)-\psi(\mathbf{r},t)-\alpha]} d\mathbf{r}' \] describing the evolution of the phase \(\psi(\mathbf{r},t)\) of an oscillator at position \(\mathbf{r}\) on the unit sphere at time \(t\). The nonlocal coupling function is \[ G(\mathbf{r},\mathbf{r}')=\cos{\gamma}+\frac{\kappa}{4}(3\cos{(2\gamma)}+1) \] where \(\kappa\) is a parameter and \(\gamma\) is the great circle distance between points \(\mathbf{r}\) and \(\mathbf{r}'\). Their main finding is the existence of a stable stripe-core mixed spiral chimera state, in which two spiral waves separated by a stripe-type region of incoherent oscillators on the equator rotate around phase-randomized cores at the poles; these spirals are in anti-phase to each other. Such a state can exist only when \(\kappa\neq 0\). The authors use the Ott/Antonsen ansatz to describe the evolution of the system and largely analytically determine the existence and stability of this and other states such as the two-core spiral state and the incoherent state, exploring the \((\alpha,\kappa)\) plane. Numerical simulations of a discretisation of the phase model are shown, which agree with the analysis given.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Abrams, D. M. & Strogatz, S. H. [2004] “ Chimera states for coupled oscillators,” Phys. Rev. Lett.93, 174102. · Zbl 1101.37319
[2] Abrams, D. M. & Strogatz, S. H. [2006] “ Chimera states in a ring of nonlocally coupled oscillators,” Int. J. Bifurcation and Chaos16, 21-37. · Zbl 1101.37319
[3] Abrams, D. M., Mirollo, R., Strogatz, S. H. & Wiley, D. A. [2008] “ Solvable model for chimera states of coupled oscillators,” Phys. Rev. Lett.101, 084103.
[4] Cherry, E. M. & Fenton, F. H. [2008] “ Visualization of spiral and scroll waves in simulated and experimental cardiac tissue,” New J. Phys.10, 125016.
[5] Choe, C.-U., Kim, R.-S. & Jo, H. [2021] “ Spiral wave chimeras induced by heterogeneity in phase lags and time delays,” Physica D422, 132892. · Zbl 1512.35060
[6] Davidsen, J. [2017] “ Symmetry-breaking spirals,” Nat. Phys., https://doi.org/10.1038/s41567-017-0014-7.
[7] Ermentrout, G. D. & Terman, D. H. [2010] Mathematical Foundations of Neuroscience (Springer, Berlin). · Zbl 1320.92002
[8] Gu, C., St-Yves, G. & Davidsen, J. [2013] “ Spiral wave chimeras in complex oscillatory and chaotic systems,” Phys. Rev. Lett.111, 134101.
[9] Kasimatis, T., Hizanidis, J. & Provata, A. [2018] “ Three-dimensional chimera patterns in networks of spiking neuron oscillators,” Phys. Rev. E97, 052213.
[10] Kim, R.-S. & Choe, C.-U. [2018] “ Symmetry-broken states on a spherical surface of coupled oscillators: From modulated coherence to spot and spiral chimeras,” Phys. Rev. E98, 042207.
[11] Kim, R.-S. & Choe, C.-U. [2019] “ Chimera state on a spherical surface of nonlocally coupled oscillators with heterogeneous phase lags,” Chaos29, 023101. · Zbl 1409.34049
[12] Kuramoto, Y. & Battogtokh, D. [2002] “ Coexistence of coherence and incoherence in nonlocally coupled phase oscillators,” Nonlin. Phenom. Compl. Syst.5, 380-385.
[13] Laing, C. [2009] “ The dynamics of chimera states in heterogeneous Kuramoto networks,” Physica D238, 1569-1588. · Zbl 1185.34042
[14] Laing, C. [2017] “ Chimeras in two-dimensional domains: Heterogeneity and the continuum limit,” SIAM J. Appl. Dyn. Syst.16, 974-1014. · Zbl 1392.34035
[15] Maistrenko, Y., Sudakov, O., Osiv, O. & Maistrenko, V. [2015] “ Chimera states in three dimensions,” New J. Phys.17, 073037. · Zbl 1450.37068
[16] Martens, E. A., Laing, C. & Strogatz, S. H. [2010] “ Solvable model of spiral wave chimeras,” Phys. Rev. Lett.104, 044101.
[17] Motter, A. E. [2010] “ Spontaneous synchrony breaking,” Nat. Phys.6, 164.
[18] Omel’chenko, O. E., Wolfrum, M., Yanchuk, S., Maistrenko, Y. L. & Sudakov, O. [2012] “ Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally coupled phase oscillators,” Phys. Rev. E85, 036210.
[19] Omel’chenko, O. E. [2013] “ Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators,” Nonlinearity26, 2469-2498. · Zbl 1281.34051
[20] Omel’chenko, O. E. [2018] “ The mathematics behind chimera states,” Nonlinearity31, R121-R164. · Zbl 1395.34045
[21] Omel’chenko, O. E., Wolfrum, M. & Knobloch, E. [2018] “ Stability of spiral chimera states on a torus,” SIAM J. Appl. Dyn. Syst.17, 97-127. · Zbl 1386.37047
[22] Ott, E. & Antonsen, T. M. [2008] “ Low dimensional behavior of large systems of globally coupled oscillators,” Chaos18, 037113. · Zbl 1309.34058
[23] Ott, E. & Antonsen, T. M. [2009] “ Long time evolution of phase oscillator systems,” Chaos19, 023117. · Zbl 1309.34059
[24] Panaggio, M. J. & Abrams, D. M. [2013] “ Chimera states on a flat torus,” Phys. Rev. Lett.110, 094102.
[25] Panaggio, M. J. & Abrams, D. M. [2015a] “ Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators,” Nonlinearity28, R67-R87. · Zbl 1392.34036
[26] Panaggio, M. J. & Abrams, D. M. [2015b] “ Chimera states on the surface of a sphere,” Phys. Rev. E91, 022909. · Zbl 1392.34036
[27] Pikovsky, A., Rosenblum, M. & Kurths, J. [2001] Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press). · Zbl 0993.37002
[28] Schmidt, A., Kasimatis, T., Hizanidis, J., Hövel, P. & Provata, A. [2017] “ Chimera patterns in two-dimensional networks of coupled neurons,” Phys. Rev. E95, 03222.
[29] Schöll, E. [2016] “ Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics,” Eur. Phys. J. Special Topics225, 891-919.
[30] Shima, S. & Kuramoto, Y. [2004] “ Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators,” Phys. Rev. E69, 036213.
[31] Strogatz, S. H. [2003] Sync: The Emerging Science of Spontaneous Order (Hyperion Press, NY).
[32] Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K. & Engel, H. [2018] “ Spiral wave chimera states in large populations of coupled chemical oscillators,” Nat. Phys.14, 282-285.
[33] Xie, J., Knobloch, E. & Kao, H.-C. [2015] “ Twisted chimera states and multicore spiral chimera states on a two-dimensional torus,” Phys. Rev. E92, 042921.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.