×

Stability of spiral chimera states on a torus. (English) Zbl 1386.37047

Summary: We study destabilization mechanisms of spiral coherence-incoherence patterns known as spiral chimera states that form on a two-dimensional lattice of nonlocally coupled phase oscillators. For this purpose we employ the linearization of the Ott-Antonsen equation that is valid in the continuum limit and perform a detailed two-parameter stability analysis of a \(D_4\)-symmetric chimera state, i.e., a four-core spiral state. We identify fold, Hopf, and parity-breaking bifurcations as the main mechanisms whereby spiral chimeras can lose stability. Beyond these bifurcations we find new spatio-temporal patterns, in particular quasiperiodic chimeras and \(D_2\)-symmetric spiral chimeras, as well as drifting states.

MSC:

37G35 Dynamical aspects of attractors and their bifurcations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
35B36 Pattern formations in context of PDEs
34A33 Ordinary lattice differential equations
37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
76F20 Dynamical systems approach to turbulence
Full Text: DOI

References:

[1] D. M. Abrams and S. H. Strogatz, {\it Chimera states for coupled oscillators}, Phys. Rev. Lett., 93 (2004), 174102. · Zbl 1101.37319
[2] P. Chossat and M. Golubitsky, {\it Symmetry-increasing bifurcation of chaotic attractors}, Phys. D, 32 (1988), pp. 423-436. · Zbl 0668.58038
[3] M. Golubitsky, I. Stewart, and D. Schaeffer, {\it Singularities and Groups in Bifurcation Theory}, Vol. II, Springer, Berlin, 1988. · Zbl 0691.58003
[4] C. Gu, G. St-Yves, and J. Davidsen, {\it Spiral wave chimeras in complex oscillatory and chaotic systems}, Phys. Rev. Lett., 111 (2013), 134101.
[5] P.-J. Kim, T.-W. Ko, H. Jeong, and H.-T. Moon, {\it Pattern formation in a two-dimensional array of oscillators with phase-shifted coupling}, Phys. Rev. E, 70 (2004), 065201.
[6] Y. Kuramoto and D. Battogtokh, {\it Coexistence of coherence and incoherence in nonlocally coupled phase oscillators}, Nonlinear Phenom. Complex Syst., 5 (2002), pp. 380-385.
[7] Y. Kuramoto and S. Shima, {\it Rotating spirals without phase singularity in reaction-diffusion systems}, Prog. Theor. Phys. Suppl., 150 (2003), pp. 115-125.
[8] C. Laing, {\it The dynamics of chimera states in heterogeneous Kuramoto networks}, Phys. D, 238 (2009), pp. 1569-1588. · Zbl 1185.34042
[9] C. Laing, {\it Chimeras in two-dimensional domains: Heterogeneity and the continuum limit}, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 974-1014. · Zbl 1392.34035
[10] H. W. Lau and J. Davidsen, {\it Linked and knotted chimera filaments in oscillatory systems}, Phys. Rev. E, 94 (2016), 010204.
[11] B.-W. Li and H. Dierckx, {\it Spiral wave chimeras in locally coupled oscillator systems}, Phys. Rev. E, 93 (2016), 020202.
[12] Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko, {\it Chimera states in three dimensions}, New J. Phys., 17 (2015), 073037. · Zbl 1450.37068
[13] E. A. Martens, C. R. Laing, and S. H. Strogatz, {\it Solvable model of spiral wave chimeras}, Phys. Rev. Lett., 104 (2010), 044101.
[14] S. Nkomo, M. R. Tinsley, and K. Showalter, {\it Chimera states in populations of nonlocally coupled chemical oscillators}, Phys. Rev. Lett., 110 (2013), 244102.
[15] O. E. Omel’chenko, {\it Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators}, Nonlinearity, 26 (2013), pp. 2469-2498. · Zbl 1281.34051
[16] O. E. Omel’chenko, {\it The mathematics behind chimera states}, Nonlinearity, to appear.
[17] O. E. Omel’chenko, M. Wolfrum, and Y. L. Maistrenko, {\it Chimera states as chaotic spatio-temporal patterns}, Phys. Rev. E, 81 (2010), 065201.
[18] O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, {\it Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally coupled phase oscillators}, Phys. Rev. E, 85 (2012), 036210.
[19] E. Ott and T. M. Antonsen, {\it Low dimensional behavior of large systems of globally coupled oscillators}, Chaos, 18 (2008), 037113. · Zbl 1309.34058
[20] E. Ott and T. M. Antonsen, {\it Long time evolution of phase oscillator systems}, Chaos, 19 (2009), 023117. · Zbl 1309.34059
[21] M. J. Panaggio and D. M. Abrams, {\it Chimera states on a flat torus}, Phys. Rev. Lett., 110 (2013), 094102.
[22] M. J. Panaggio and D. M. Abrams, {\it Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators}, Nonlinearity, 28 (2015), pp. R67-R87. · Zbl 1392.34036
[23] M. J. Panaggio and D. M. Abrams, {\it Chimera states on the surface of a sphere}, Phys. Rev. E, 91 (2015), 022909. · Zbl 1392.34036
[24] A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, and P. Hövel, {\it Chimera patterns in two-dimensional networks of coupled neurons}, Phys. Rev. E, 95 (2017), 032224.
[25] S. Shima and Y. Kuramoto, {\it Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators}, Phys. Rev. E, 69 (2004), 036213.
[26] M. R. Tinsley, S. Nkomo, and K. Showalter, {\it Chimera and phase-cluster states in populations of coupled chemical oscillators}, Nature Phys., 8 (2012), pp. 662-665.
[27] A. M. Turing, {\it The chemical basis of morphogenesis}, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), pp. 37-72. · Zbl 1403.92034
[28] J. Xie, E. Knobloch, and H.-C. Kao, {\it Multicluster and traveling chimera states in nonlocal phase-coupled oscillators}, Phys. Rev. E, 90 (2014), 022919.
[29] J. Xie, E. Knobloch, and H.-C. Kao, {\it Twisted chimera states and multicore spiral chimera states on a two-dimensional torus}, Phys. Rev. E, 92 (2015), 042921.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.