×

Critical points of the Moser-Trudinger functional on closed surfaces. (English) Zbl 1506.35050

Authors’ abstract: Given a closed Riemann surface \((\Sigma, g_0)\) and any positive weight \(f \in C^\infty(\Sigma)\), we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional \[ I_{p,\beta}(u)=\frac{2-p}{2}\left(\frac{p \|u\|^2_{H^1}}{2\beta} \right)^\frac{p}{2-p} - \ln \int_{\Sigma}\left(e^{u^p_+} -1 \right) f d v_{g_0}, \] for every \(p\in (1,2)\) and \(\beta>0\), or for \(p=1\) and \(\beta \in (0,\infty)\backslash 4\pi\mathbb{N}\). Letting \(p \uparrow 2\) we obtain positive critical points of the Moser-Trudinger functional \[ F(u):= \int_\Sigma \left(e^{u^2} -1 \right) f d v_{g_0} \] constrained to \(\mathcal{E}_\beta := \left\{v\ \ s.t. \ \|v\|^2_{H^1}=\beta \right\}\) for any \(\beta >0\).

MSC:

35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations
49J35 Existence of solutions for minimax problems

References:

[1] Bartolucci, D.; Lin, C-S, Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter, Math. Ann., 359, 1-2, 1-44 (2014) · Zbl 1300.35058
[2] Battaglia, L.; Jevnikar, A.; Malchiodi, A.; Ruiz, D., A general existence result for the Toda system on compact surfaces, Adv. Math., 285, 937-979 (2015) · Zbl 1327.35098
[3] Carleson, L.; Chang, S-YA, On the existence of an extremal function for an inequality of, J. Moser. Bull. Sci. Math., 110, 2, 113-127 (1986) · Zbl 0619.58013
[4] Chang, S.-Y. A., Chen, C.-C., Lin, C.-S.: Extremal functions for a mean field equation in two dimension. In: Lectures on partial differential equations, volume 2 of New Stud. Adv. Math., pages 61-93. Int. Press, Somerville, MA (2003) · Zbl 1071.35040
[5] Chen, C-C; Lin, C-S, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55, 6, 728-771 (2002) · Zbl 1040.53046
[6] Chen, C-C; Lin, C-S, Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., 56, 12, 1667-1727 (2003) · Zbl 1032.58010
[7] Chen, WX; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 3, 615-622 (1991) · Zbl 0768.35025
[8] Chen, WX; Li, C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1, 4, 359-372 (1991) · Zbl 0739.58012
[9] Costa, DG; Tintarev, C., Concentration profiles for the Trudinger-Moser functional are shaped like toy pyramids, J. Funct. Anal., 266, 2, 676-692 (2014) · Zbl 1290.35113
[10] De Marchis, F., Multiplicity result for a scalar field equation on compact surfaces, Commun. Partial Differ. Equ., 33, 10-12, 2208-2224 (2008) · Zbl 1165.35020
[11] De Marchis, F., Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259, 8, 2165-2192 (2010) · Zbl 1211.58011
[12] De Marchis, F.; Ianni, I.; Pacella, F., Asymptotic profile of positive solutions of Lane-Emden problems in dimension two, J. Fixed Point Theory Appl., 19, 1, 889-916 (2017) · Zbl 1380.35110
[13] del Pino, M.; Musso, M.; Ruf, B., New solutions for Trudinger-Moser critical equations in \(\mathbb{R}^2\), J. Funct. Anal., 258, 2, 421-457 (2010) · Zbl 1191.35138
[14] del Pino, M.; Musso, M.; Ruf, B., Beyond the Trudinger-Moser supremum, Calc. Var. Partial Differ. Equ., 44, 3-4, 543-576 (2012) · Zbl 1246.46037
[15] Deng, S.; Musso, M., Bubbling solutions for an exponential nonlinearity in \(\mathbb{R}^2\), J. Differ. Equ., 257, 7, 2259-2302 (2014) · Zbl 1301.35038
[16] Ding, W.; Jost, J.; Li, J.; Wang, G., The differential equation \(\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface, Asian J. Math., 1, 2, 230-248 (1997) · Zbl 0955.58010
[17] Ding, W.; Jost, J.; Li, J.; Wang, G., Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, 5, 653-666 (1999) · Zbl 0937.35055
[18] Djadli, Z., Existence result for the mean field problem on riemann surfaces of all genuses, Commun. Contemp. Math., 10, 2, 205-220 (2008) · Zbl 1151.53035
[19] Djadli, Z.; Malchiodi, A., Existence of conformal metrics with constant q-curvature, Ann. Math., 168, 3, 813-858 (2008) · Zbl 1186.53050
[20] do Carmo, M. P.: Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, N.J., (1976). Translated from the Portuguese · Zbl 0326.53001
[21] Druet, O., Multibumps analysis in dimension 2: quantification of blow-up levels, Duke Math. J., 132, 2, 217-269 (2006) · Zbl 1281.35045
[22] Druet, O., Malchiodi, A., Martinazzi, L., Thizy, P.-D.: Multi-bumps analysis for Trudinger-Moser nonlinearities II-Existence of solutions of high energies. In preparation
[23] Druet, O.; Thizy, P-D, Multi-bump analysis for Trudinger-Moser nonlinearities IQuantification and location of concentration points, J. Eur. Math. Soc. (2020) · Zbl 1458.35167 · doi:10.4171/JEMS/1002
[24] Figueroa, P.; Musso, M., Bubbling solutions for Moser-Trudinger type equations on compact Riemann surfaces, J. Funct. Anal., 275, 10, 2684-2739 (2018) · Zbl 1454.35068
[25] Flucher, M., Extremal functions for the Trudinger-Moser inequality in \(2\) dimensions, Comment. Math. Helv., 67, 3, 471-497 (1992) · Zbl 0763.58008
[26] Fontana, L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68, 3, 415-454 (1993) · Zbl 0844.58082
[27] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition
[28] Han, Q., Lin, F.: Elliptic partial differential equations. Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York (1997) · Zbl 1051.35031
[29] Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University Courant Institute of Mathematical Sciences, New York (1999)
[30] Ibrahim, S.; Masmoudi, N.; Nakanishi, K.; Sani, F., Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities, J. Funct. Anal., 278, 1 (2020) · Zbl 1435.35142
[31] Judovič, VI, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138, 805-808 (1961) · Zbl 0144.14501
[32] Lamm, T.; Robert, F.; Struwe, M., The heat flow with a critical exponential nonlinearity, J. Funct. Anal., 257, 9, 2951-2998 (2009) · Zbl 1387.35371
[33] Laurain, P., Concentration of \(CMC\) surfaces in a 3-manifold, Int. Math. Res. Not. IMRN, 24, 5585-5649 (2012) · Zbl 1271.53057
[34] Li, Y., Harnack type inequality: the method of moving planes, Commun. Math. Phys., 200, 2, 421-444 (1999) · Zbl 0928.35057
[35] Li, Y., Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differ. Equ., 14, 2, 163-192 (2001) · Zbl 0995.58021
[36] Lin, C-S; Lucia, M., Uniqueness of solutions for a mean field equation on torus, J. Differ. Equ., 229, 1, 172-185 (2006) · Zbl 1105.58005
[37] Malchiodi, A., Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equ., 13, 11-12, 1109-1129 (2008) · Zbl 1175.53052
[38] Malchiodi, A., Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21, 277-294 (2008) · Zbl 1144.35372
[39] Malchiodi, A.; Martinazzi, L., Critical points of the Moser-Trudinger functional on a disk, J. Eur. Math. Soc. (JEMS), 16, 5, 893-908 (2014) · Zbl 1304.49011
[40] Mancini, G.; Martinazzi, L., The Moser-Trudinger inequality and its extremals on a disk via energy estimates, Calc. Var. Partial Differ. Equ., 56, 4, 26 (2017) · Zbl 1382.35010
[41] Mancini, G.; Thizy, P-D, Glueing a peak to a non-zero limiting profile for a critical Moser-Trudinger equation, J. Math. Anal. Appl., 472, 2, 1430-1457 (2019) · Zbl 1417.35045
[42] Mancini, G., Thizy, P.-D.: Critical points of Moser-Trudinger type functionals: a general picture. (2020). In preparation
[43] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20:1077-1092 (1970/71) · Zbl 0203.43701
[44] Nolasco, M.; Tarantello, G., On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145, 2, 161-195 (1998) · Zbl 0980.46022
[45] Pohožaev, SI, On the eigenfunctions of the equation \(\delta u+\lambda f(u)=0\), Dokl. Akad. Nauk SSSR, 165, 36-39 (1965) · Zbl 0141.30202
[46] Struwe, M., Critical points of embeddings of \(H^{1, n}_0\) into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 5, 425-464 (1988) · Zbl 0664.35022
[47] Struwe, M., The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160, 1-2, 19-64 (1988) · Zbl 0646.53005
[48] Struwe, M.: Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, (2008). Applications to nonlinear partial differential equations and Hamiltonian systems · Zbl 1284.49004
[49] Suzuki, T., Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9, 4, 367-397 (1992) · Zbl 0785.35045
[50] Taylor, M. E.: Partial differential equations I. Basic theory, volume 115 of Applied Mathematical Sciences. Springer, New York, second edition (2011) · Zbl 1206.35002
[51] Thizy, P-D, When does a perturbed Moser-Trudinger inequality admit an extremal ?, Anal. PDE, 13, 5, 1371-1415 (2020) · Zbl 1452.35009
[52] Trudinger, NS, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402
[53] Yang, Y., Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary, Calc. Var. Partial Differ. Equ., 53, 3-4, 901-941 (2015) · Zbl 1404.58034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.