×

The Moser-Trudinger inequality and its extremals on a disk via energy estimates. (English) Zbl 1382.35010

Summary: We study the Dirichlet energy of non-negative radially symmetric critical points \(u_\mu \) of the Moser-Trudinger inequality on the unit disc in \(\mathbb {R}^2\), and prove that it expands as \[ 4\pi +\frac{4\pi }{\mu ^{4}}+o(\mu ^{-4})\leq \int _{B_1}|\nabla u_\mu |^2dx\leq 4\pi +\frac{6\pi }{\mu ^{4}}+o(\mu ^{-4}), \quad \text{as }\mu \rightarrow \infty , \] where \(\mu =u_\mu (0)\) is the maximum of \(u_\mu \). As a consequence, we obtain a new proof of the Moser-Trudinger inequality, of the Carleson-Chang result about the existence of extremals, and of the Struwe and Lamm-Robert-Struwe multiplicity result in the supercritical regime (only in the case of the unit disk). Our results are stable under sufficiently weak perturbations of the Moser-Trudinger functional. We explicitly identify the critical level of perturbation for which, although the perturbed Moser-Trudinger inequality still holds, the energy of its critical points converges to \(4\pi \) from below. We expect, in some of these cases, that the existence of extremals does not hold, nor the existence of critical points in the supercritical regime.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B09 Positive solutions to PDEs
35B33 Critical exponents in context of PDEs
35B44 Blow-up in context of PDEs
34E05 Asymptotic expansions of solutions to ordinary differential equations
35A15 Variational methods applied to PDEs

References:

[1] Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385-398 (1988) · Zbl 0672.31008 · doi:10.2307/1971445
[2] Adimurthi, A.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the \[n\] n-Laplacian. Ann. Sc. Norm. Sup. Pisa Ser. IV 17, 393-413 (1990) · Zbl 0732.35028
[3] Adimurthi, A., Yang, Y.: Multibubble analysis on \[NN\]-Laplace equation in \[\mathbb{R}^N\] RN. Calc. Var. 40, 1-14 (2011) · Zbl 1205.35132 · doi:10.1007/s00526-010-0330-6
[4] Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110, 113-127 (1986) · Zbl 0619.58013
[5] del Pino, M., Musso, M., Ruf, B.: Beyond the Trudinger-Moser supremum. Calc. Var. Partial Differ. Equ. 44, 543-576 (2012) · Zbl 1246.46037 · doi:10.1007/s00526-011-0444-5
[6] Druet, O.: Multibumps analysis in dimension \[22\], quantification of blow-up levels. Duke Math. J. 132, 217-269 (2006) · Zbl 1281.35045 · doi:10.1215/S0012-7094-06-13222-2
[7] Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67(3), 471-497 (1992) · Zbl 0763.58008 · doi:10.1007/BF02566514
[8] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (2001). (Reprint of the 1998 edition) · Zbl 1042.35002
[9] Iula, S., Maalaoui, A., Martinazzi, L.: Critical points of a fractional Moser-Trudinger embedding in dimension 1. Differ. Integral Equ. 29, 455-492 (2016) · Zbl 1363.26011
[10] Lamm, T., Robert, F., Struwe, M.: The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257, 2951-2998 (2009) · Zbl 1387.35371 · doi:10.1016/j.jfa.2009.05.018
[11] Li, Y.: Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. J. Sci. China Ser. A 48(5), 618-648 (2005) · Zbl 1100.53036 · doi:10.1360/04ys0050
[12] Maalaoui, A., Martinazzi, L., Schikorra, A.: Blow-up behaviour of a fractional Adams-Moser-Trudinger type inequality in odd dimension. Commun. Partial Differ. Equ. doi:10.1080/03605302.2016.1222544 · Zbl 1372.35342
[13] Malchiodi, A., Martinazzi, L.: Critical points of the Moser-Trudinger functional on a disk. J. Eur. Math. Soc. (JEMS) 16, 893-908 (2014) · Zbl 1304.49011 · doi:10.4171/JEMS/450
[14] Martinazzi, L.: A threshold phenomenon for embeddings of \[H^m_0\] H0m into Orlicz spaces. Calc. Var. Partial Differ. Equ. 36, 493-506 (2009) · Zbl 1180.35211 · doi:10.1007/s00526-009-0239-0
[15] Martinazzi, L., Struwe, M.: Quantization for an elliptic equation of order \[2m2\] m with critical exponential non-linearity. Math. Z. 270, 453-487 (2012) · Zbl 1247.35027 · doi:10.1007/s00209-010-0807-1
[16] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1971) · Zbl 0213.13001 · doi:10.1512/iumj.1971.20.20101
[17] Pohozaev, S.I.: The Sobolev embedding in the case \[pl=n\] pl=n. In: Proceedings of Technology Science Conference on Advance Science and Research 1964-1965, Mathematics Section, Moskov. Energet. Inst. Moscow, pp. 158-170 (1965) · Zbl 0732.35028
[18] Pruss, A.R.: Nonexistence of maxima for perturbations of some inequalities with critical growth. Can. Math. Bull. 39, 227-237 (1996) · Zbl 0855.49008 · doi:10.4153/CMB-1996-029-1
[19] Robert, F., Struwe, M.: Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four. Adv. Nonlinear Stud. 4, 397-415 (2004) · Zbl 1113.35053 · doi:10.1515/ans-2004-0403
[20] Struwe, M.: Critical points of embeddings of \[H^{1, n}_0\] H01,n into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425-464 (1984) · Zbl 0664.35022 · doi:10.1016/S0294-1449(16)30338-9
[21] Struwe, M.: Quantization for a fourth order equation with critical exponential growth. Math. Z. 256, 397-424 (2007) · Zbl 1172.35017 · doi:10.1007/s00209-006-0081-4
[22] Trudinger, N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473-483 (1967) · Zbl 0163.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.