×

Dissipative structure of one-dimensional isothermal compressible fluids of Korteweg type. (English) Zbl 1504.35454

Summary: This paper studies the dissipative structure of the system of equations that describes the motion of a compressible, isothermal, viscous-capillar fluid of Korteweg type in one space dimension. It is shown that the system satisfies the genuine coupling condition of J. Humpherys [J. Hyperbolic Differ. Equ. 2, No. 4, 963–974 (2005; Zbl 1090.35119)], which is, in turn, an extension to higher order systems of the classical condition by S. Kawashima and Y. Shizuta [Tôhoku Math. J. (2) 40, No. 3, 449–464 (1988; Zbl 0699.35171); Hokkaido Math. J. 14, 249–275 (1985; Zbl 0587.35046)] for second order systems. It is proved that genuine coupling implies the decay of solutions to the linearized system around a constant equilibrium state. For that purpose, the symmetrizability of the Fourier symbol is used in order to construct an appropriate compensating matrix. These linear decay estimates imply the global decay of perturbations to constant equilibrium states as solutions to the full nonlinear system, via a standard continuation argument.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35L65 Hyperbolic conservation laws

References:

[1] Angeles, F.; Málaga, C.; Plaza, R. G., Strict dissipativity of Cattaneo-Christov systems for compressible fluid flow, J. Phys. A, 53, 6, Article 065701 pp. (2020), 23 pp. · Zbl 1511.76087
[2] Benzoni-Gavage, S.; Danchin, R.; Descombes, S., Well-posedness of one-dimensional Korteweg models, Electron. J. Differ. Equ., 2006, 59, Article 1 pp. (2006), (electronic) · Zbl 1114.76058
[3] Bresch, D.; Desjardins, B.; Lin, C.-K., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., 28, 3-4, 843-868 (2003) · Zbl 1106.76436
[4] Bresch, D.; Gisclon, M.; Lacroix-Violet, I., On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models, Arch. Ration. Mech. Anal., 233, 3, 975-1025 (2019) · Zbl 1433.35217
[5] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67 (1971), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0213.16602
[6] Charve, F.; Haspot, B., Existence of a global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system, SIAM J. Math. Anal., 45, 2, 469-494 (2013) · Zbl 1294.35091
[7] Chen, Z.; Chai, X.; Dong, B.; Zhao, H., Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data, J. Differ. Equ., 259, 8, 4376-4411 (2015) · Zbl 1320.35275
[8] Chen, Z.; Li, Y.; Sheng, M., Asymptotic stability of viscous shock profiles for the 1D compressible Navier-Stokes-Korteweg system with boundary effect, Dyn. Partial Differ. Equ., 16, 3, 225-251 (2019) · Zbl 1428.35351
[9] Chen, Z.; Zhao, H., Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl. (9), 101, 3, 330-371 (2014) · Zbl 1288.35387
[10] Danchin, R.; Desjardins, B., Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 18, 1, 97-133 (2001) · Zbl 1010.76075
[11] Dunn, J. E.; Serrin, J., On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 2, 95-133 (1985) · Zbl 0582.73004
[12] Freistühler, H.; Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Ration. Mech. Anal., 224, 1, 1-20 (2017) · Zbl 1366.35130
[13] Freistühler, H.; Kotschote, M., Phase-field descriptions of two-phase compressible fluid flow: interstitial working and a reduction to Korteweg theory, Q. Appl. Math., 77, 3, 489-496 (2019) · Zbl 1421.35275
[14] Friedrichs, K. O., Symmetric hyperbolic linear differential equations, Commun. Pure Appl. Math., 7, 345-392 (1954) · Zbl 0059.08902
[15] Gao, J.; Lyu, Z.; Yao, Z.-a., Lower bound of decay rate for higher-order derivatives of solution to the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 71, 4, 108 (2020) · Zbl 1442.35337
[16] Hagan, R.; Slemrod, M., The viscosity-capillarity criterion for shocks and phase transitions, Arch. Ration. Mech. Anal., 83, 4, 333-361 (1983) · Zbl 0531.76069
[17] Hanouzet, B.; Natalini, R., Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 169, 2, 89-117 (2003) · Zbl 1037.35041
[18] Haspot, B., Existence of strong solutions for nonisothermal Korteweg system, Ann. Math. Blaise Pascal, 16, 2, 431-481 (2009) · Zbl 1245.76131
[19] Haspot, B., Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13, 2, 223-249 (2011) · Zbl 1270.35366
[20] Hattori, H.; Li, D. N., Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25, 1, 85-98 (1994) · Zbl 0817.35076
[21] Hattori, H.; Li, D. N., The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differ. Equ., 9, 4, 323-342 (1996) · Zbl 0881.35095
[22] Hattori, H.; Li, D. N., Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198, 1, 84-97 (1996) · Zbl 0858.35124
[23] Humpherys, J., Admissibility of viscous-dispersive systems, J. Hyperbolic Differ. Equ., 2, 4, 963-974 (2005) · Zbl 1090.35119
[24] Humpherys, J., On the shock wave spectrum for isentropic gas dynamics with capillarity, J. Differ. Equ., 246, 7, 2938-2957 (2009) · Zbl 1163.35454
[25] Kawashima, S., Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics (1983), Kyoto University, PhD thesis
[26] Kawashima, S., Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Jpn. Acad., Ser. A, Math. Sci., 62, 8, 285-287 (1986) · Zbl 0627.35006
[27] Kawashima, S.; Shibata, Y.; Xu, J., The \(L^p\) energy methods and decay for the compressible Navier-Stokes equations with capillarity, J. Math. Pures Appl. (9), 154, 146-184 (2021) · Zbl 1480.76098
[28] Kawashima, S.; Shibata, Y.; Xu, J., Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion, Commun. Partial Differ. Equ., 47, 2, 378-400 (2022) · Zbl 1484.35157
[29] Kawashima, S.; Shizuta, Y., The Navier-Stokes equation in the discrete kinetic theory, J. Méc. Théor. Appl., 7, 5, 597-621 (1988) · Zbl 0663.76089
[30] Kawashima, S.; Shizuta, Y., On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. (2), 40, 3, 449-464 (1988) · Zbl 0699.35171
[31] Kawashima, S.; Yong, W.-A., Dissipative structure and entropy for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 174, 3, 345-364 (2004) · Zbl 1065.35187
[32] Kawashima, S.; Yong, W.-A., Decay estimates for hyperbolic balance laws, Z. Anal. Anwend., 28, 1, 1-33 (2009) · Zbl 1173.35365
[33] Kobayashi, T.; Murata, M.; Saito, H., Resolvent estimates for a compressible fluid model of Korteweg type and their application, J. Math. Fluid Mech., 24, 1 (2022), Paper No. 12 · Zbl 1481.35333
[34] Kobayashi, T.; Tsuda, K., Time decay estimate with diffusion wave property and smoothing effect for solutions to the compressible Navier-Stokes-Korteweg system, Funkc. Ekvacioj, 64, 2, 163-187 (2021) · Zbl 1479.35619
[35] Korteweg, D. J., Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Arch. Neerl. Sci. Exactes Nat. Ser. II, 6, 1-24 (1901) · JFM 32.0756.02
[36] Kotschote, M., Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 25, 4, 679-696 (2008) · Zbl 1141.76053
[37] Kotschote, M., Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid, J. Math. Fluid Mech., 12, 4, 473-484 (2010) · Zbl 1270.76063
[38] Lawden, D. F., Elliptic Functions and Applications, Applied Mathematical Sciences, vol. 80 (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0689.33001
[39] Li, Y.; Luo, Z., Zero-viscosity-capillarity limit to rarefaction waves for the 1D compressible Navier-Stokes-Korteweg equations, Math. Methods Appl. Sci., 39, 18, 5513-5528 (2016) · Zbl 1457.76134
[40] R.G. Plaza, J.M. Valdovinos, Global decay of perturbations of equilibrium states for one-dimensional heat conducting compressible fluids of Korteweg type, in preparation.
[41] Serre, D., Systems of Conservation Laws 1. Hyperbolicity, Entropies, Shock Waves (1999), Cambridge University Press: Cambridge University Press Cambridge, Translated from the 1996 French original by I.N. Sneddon · Zbl 0930.35001
[42] Shizuta, Y.; Kawashima, S., Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14, 2, 249-275 (1985) · Zbl 0587.35046
[43] Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal., 81, 4, 301-315 (1983) · Zbl 0505.76082
[44] Slemrod, M., Dynamic phase transitions in a van der Waals fluid, J. Differ. Equ., 52, 1, 1-23 (1984) · Zbl 0487.76006
[45] Tan, Z.; Zhang, R., Optimal decay rates of the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65, 2, 279-300 (2014) · Zbl 1292.35052
[46] Ueda, Y.; Duan, R.; Kawashima, S., Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Ration. Mech. Anal., 205, 1, 239-266 (2012) · Zbl 1273.35051
[47] Umeda, T.; Kawashima, S.; Shizuta, Y., On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Jpn. J. Appl. Math., 1, 2, 435-457 (1984) · Zbl 0634.76120
[48] Valdovinos, J. M., Well-posedness and dissipative structure of the one-dimensional system for compressible isothermal fluids of Korteweg type (2020), Universidad Nacional Autónoma de México, M.Sc. Thesis
[49] van der Waals, J. D., Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Z. Phys. Chem., 13, 1, 657-725 (1894)
[50] Wang, Y.; Tan, Z., Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379, 1, 256-271 (2011) · Zbl 1211.35228
[51] Xu, J.; Kawashima, S., A survey on global existence and time-decay estimates for hyperbolic system with dissipation, Adv. Math., 46, 3, 321-330 (2017) · Zbl 1389.35007
[52] Yong, W.-A., Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal., 172, 2, 247-266 (2004) · Zbl 1058.35162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.