×

Smoothed finite element methods (S-FEM): an overview and recent developments. (English) Zbl 1398.65312

Summary: The smoothed finite element methods (S-FEM) are a family of methods formulated through carefully designed combinations of the standard FEM and some of the techniques from the meshfree methods. Studies have proven that S-FEM models behave softer than the FEM counterparts using the same mesh structure, often produce more accurate solutions, higher convergence rates, and much less sensitivity to mesh distortion. They work well with triangular or tetrahedral mesh that can be automatically generated, and hence are ideal for automated computations and adaptive analyses. Some S-FEM models can also produce upper bound solution for force driving problems, which is an excellent unique complementary feature to FEM. Because of these attractive properties, S-FEM has been applied to numerous problems in the disciplines of material mechanics, biomechanics, fracture mechanics, plates and shells, dynamics, acoustics, heat transfer and fluid-structure interactions. This paper reviews the developments and applications of the S-FEM in the past ten years. We hope this review can shed light on further theoretical development of S-FEM and more complex practical applications in future.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

HYPLAS; Matlab; XFEM
Full Text: DOI

References:

[1] Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs · Zbl 0634.73056
[2] Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, West Sussex · Zbl 1279.74002
[3] Liu GR, Quek SS (2013) The finite element method: a practical course, 2nd edn. Butterworth-Heinemann, Oxford · Zbl 1027.74001
[4] Turner MJ (1959) The direct stiffness method of structural analysis, structural and materials panel paper. In: AGARD meeting—1959, Aachen, Germany · Zbl 0844.76060
[5] Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton · Zbl 1205.74003 · doi:10.1201/9781420082104
[6] Liu GR, Zhang GY (2013) The smoothed point interpolation methods—G space theory and weakened weak forms. World Scientific, New Jersey · Zbl 1278.65002 · doi:10.1142/8742
[7] Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs · Zbl 1326.65002
[8] Pian THH, Wu CC (2006) Hybrid and incompatible finite element methods. CRC Press, Boca Raton · Zbl 1110.65003
[9] Liu, GR, An overview on meshfree methods: for computational solid mechanics, Int J Comput Methods, 13, 1630001, (2016) · Zbl 1359.74388 · doi:10.1142/S0219876216300014
[10] Chen, JS; Wu, CT; Yoon, S; You, Y, A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[11] Liu, GR; Dai, KY; Nguyen-Thoi, T, A smoothed finite element method for mechanics problems, Comput Mech, 39, 859-877, (2007) · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[12] Dai KY, Liu GR (2007) Smoothed finite element method, CE006. http://hdl.handle.net/1721.1/35825 · Zbl 1404.74166
[13] Liu, GR; Nguyen, TT; Dai, KY; Lam, KY, Theoretical aspects of the smoothed finite element method (SFEM), Int J Numer Methods Eng, 71, 902-930, (2007) · Zbl 1194.74432 · doi:10.1002/nme.1968
[14] Dai, KY; Liu, GR, Free and forced vibration analysis using the smoothed finite element method (SFEM), J Sound Vib, 301, 803-820, (2007) · doi:10.1016/j.jsv.2006.10.035
[15] Dai, KY; Liu, GR; Nguyen-Thoi, T, An n-sided polygonal smoothed finite element method (nsfem) for solid mechanics, Finite Elem Anal Des, 43, 847-860, (2007) · doi:10.1016/j.finel.2007.05.009
[16] Nguyen-Thoi, T; Liu, GR; Dai, KY; Lam, KY, Selective smoothed finite element method, Tsinghua Sci Technol, 12, 497-508, (2007) · doi:10.1016/S1007-0214(07)70125-6
[17] Liu, GR, A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int J Comput Methods, 5, 199-236, (2008) · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[18] Liu, GR; Nguyen-Thoi, T; Lam, KY, A novel alpha finite element method (\(α\)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput Methods Appl Mech Eng, 197, 3883-3897, (2008) · Zbl 1194.74433 · doi:10.1016/j.cma.2008.03.011
[19] Cui, XY; Liu, GR; Li, GY; Zhao, X; Nguyen, TT; Sun, GY, A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells, CMES: Comput Model Eng Sci, 28, 109-125, (2008) · Zbl 1232.74099
[20] Liu, GR; Nguyen-Thoi, T; Nguyen-Xuan, H; Lam, KY, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput Struct, 87, 14-26, (2009) · doi:10.1016/j.compstruc.2008.09.003
[21] He, ZC; Liu, GR; Zhong, ZH; Wu, SC; Zhang, GY; Cheng, AG, An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems, Comput Methods Appl Mech Eng, 199, 20-33, (2009) · Zbl 1231.76147 · doi:10.1016/j.cma.2009.09.014
[22] Liu, GR; Nguyen-Thoi, T; Lam, KY, An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J Sound Vib, 320, 1100-1130, (2009) · doi:10.1016/j.jsv.2008.08.027
[23] Cui, XY; Liu, GR; Li, GY; Zhang, GY; Sun, GY, Analysis of elastic-plastic problems using edge-based smoothed finite element method, Int J Press Vessel Pip, 86, 711-718, (2009) · doi:10.1016/j.ijpvp.2008.12.004
[24] Nguyen-Thoi, T; Liu, GR; Vu-Do, HC; Nguyen-Xuan, H, An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput Mech, 45, 23-44, (2009) · Zbl 1398.74382 · doi:10.1007/s00466-009-0415-2
[25] Liu, GR; Nguyen-Xuan, H; Nguyen-Thoi, T; Xu, X, A novel Galerkin-like weakform and a superconvergent alpha finite element method (S\(α\)FEM) for mechanics problems using triangular meshes, J Comput Phys, 228, 4055-4087, (2009) · Zbl 1273.74542 · doi:10.1016/j.jcp.2009.02.017
[26] Liu, GR; Nguyen-Thoi, T; Lam, KY, A novel FEM by scaling the gradient of strains with factor alpha (\(α\)FEM), Comput Mech, 43, 369-391, (2009) · Zbl 1162.74469 · doi:10.1007/s00466-008-0311-1
[27] Nguyen-Thoi, T; Liu, GR; Lam, KY; Zhang, GY, A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements, Int J Numer Methods Eng, 78, 324-353, (2009) · Zbl 1183.74299 · doi:10.1002/nme.2491
[28] Nguyen-Thoi, T; Liu, GR; Vu-Do, HC; Nguyen-Xuan, H, A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput Methods Appl Mech Eng, 198, 3479-3498, (2009) · Zbl 1230.74193 · doi:10.1016/j.cma.2009.07.001
[29] He, ZC; Liu, GR; Zhong, ZH; Cui, XY; Zhang, GY; Cheng, AG, A coupled edge-/face-based smoothed finite element method for structural acoustic problems, Appl Acoust, 71, 955-964, (2010) · doi:10.1016/j.apacoust.2010.06.007
[30] Zhang, ZQ; Yao, J; Liu, GR, An immersed smoothed finite element method for fluid-structure interaction problems, Int J Comput Methods, 8, 747-757, (2011) · Zbl 1245.74012 · doi:10.1142/S0219876211002794
[31] Vu-Bac, N; Nguyen-Xuan, H; Chen, L; Bordas, S; Kerfriden, P; Simpson, RN; Liu, GR; Rabczuk, T, A node-based smoothed XFEM for fracture mechanics, CMES: Comput Model Eng Sci, 73, 331-356, (2011) · Zbl 1231.74444
[32] Chen, L; Rabczuk, T; Bordas, SPA; Liu, GR; Zeng, KY; Kerfriden, P, Extended finite element method with edge-based strain smoothing (esm-XFEM) for linear elastic crack growth, Comput Methods Appl Mech Eng, 209, 250-265, (2012) · Zbl 1243.74170 · doi:10.1016/j.cma.2011.08.013
[33] Nguyen-Xuan, H; Liu, GR, An edge-based smoothed finite element method softened with a bubble function (bes-FEM) for solid mechanics problems, Comput Struct, 128, 14-30, (2013) · doi:10.1016/j.compstruc.2013.05.009
[34] Zeng, W; Liu, GR; Kitamura, Y; Nguyen-Xuan, H, A three-dimensional ES-FEM for fracture mechanics problems in elastic solids, Eng Fract Mech, 114, 127-150, (2013) · doi:10.1016/j.engfracmech.2013.10.017
[35] Jiang, C; Zhang, Z-Q; Liu, GR; Han, X; Zeng, W, An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues, Eng Anal Bound Elem, 59, 62-77, (2015) · Zbl 1403.74111 · doi:10.1016/j.enganabound.2015.04.019
[36] Zeng, W; Liu, GR; Li, D; Dong, XW, A smoothing technique based beta finite element method (\(β\)FEM) for crystal plasticity modeling, Comput Struct, 162, 48-67, (2016) · doi:10.1016/j.compstruc.2015.09.007
[37] Liu, GR, On G space theory, Int J Comput Methods, 06, 257-289, (2009) · Zbl 1264.74266 · doi:10.1142/S0219876209001863
[38] Liu, GR; Nguyen-Thoi, T; Nguyen-Xuan, H; Dai, KY; Lam, KY, On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (letter to editor), Int J Numer Methods Eng, 77, 1863-1869, (2009) · Zbl 1181.74137 · doi:10.1002/nme.2587
[39] Liu, GR; Zhang, GY, A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method, Int J Comput Methods, 6, 147-179, (2009) · Zbl 1264.74285 · doi:10.1142/S0219876209001796
[40] Nguyen-Thoi, T; Liu, GR; Nguyen-Xuan, H, Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, Int J Comput Methods, 6, 633-666, (2009) · Zbl 1267.74115 · doi:10.1142/S0219876209001954
[41] Nguyen-Thoi T (2009) Development of smoothed finite element method (SFEM). Ph.D. thesis, National University of Singapore · Zbl 1267.74115
[42] Liu, GR; Nguyen-Xuan, H; Nguyen-Thoi, T, A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates, Int J Numer Methods Eng, 84, 1222-1256, (2010) · Zbl 1202.74180 · doi:10.1002/nme.2941
[43] Liu, GR, A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory, Int J Numer Methods Eng, 81, 1093-1126, (2010) · Zbl 1183.74358
[44] Liu, GR, A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part II applications to solid mechanics problems, Int J Numer Methods Eng, 81, 1127-1156, (2010) · Zbl 1183.74359
[45] Liu GR, Nguyen-Thoi T (2010) Smoothed finite element methods. CRC Press, Boca Raton · doi:10.1201/EBK1439820278
[46] Hung, N-X; Bordas, SPA; Hung, N-D, Smooth finite element methods: convergence, accuracy and properties, Int J Numer Methods Eng, 74, 175-208, (2008) · Zbl 1159.74435 · doi:10.1002/nme.2146
[47] Hung, N-X; Bordas, SPA; Hung, N-D, Addressing volumetric locking and instabilities by selective integration in smoothed finite elements, Commun Numer Methods Eng, 25, 19-34, (2009) · Zbl 1169.74044 · doi:10.1002/cnm.1098
[48] Bordas, SPA; Natarajan, S, On the approximation in the smoothed finite element method (SFEM), Int J Numer Methods Eng, 81, 660-670, (2010) · Zbl 1183.74261
[49] Bordas, SPA; Rabczuk, T; Hung, N-X; Nguyen, VP; Natarajan, S; Bog, T; Quan, DM; Hiep, NV, Strain smoothing in FEM and XFEM, Comput Struct, 88, 1419-1443, (2010) · doi:10.1016/j.compstruc.2008.07.006
[50] Nguyen-Xuan, H; Nguyen, HV; Bordas, S; Rabczuk, T; Duflot, M, A cell-based smoothed finite element method for three dimensional solid structures, KSCE J Civ Eng, 16, 1230-1242, (2012) · doi:10.1007/s12205-012-1515-7
[51] Nguyen-Thoi, T; Vu-Do, HC; Rabczuk, T; Nguyen-Xuan, H, A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput Methods Appl Mech Eng, 199, 3005-3027, (2010) · Zbl 1231.74432 · doi:10.1016/j.cma.2010.06.017
[52] He, ZC; Li, GY; Zhong, ZH; Cheng, AG; Zhang, GY; Liu, GR; Li, E; Zhou, Z, An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems, Comput Mech, 52, 221-236, (2013) · Zbl 1308.74064 · doi:10.1007/s00466-012-0809-4
[53] Nguyen-Thanh, N; Rabczuk, T; Nguyen-Xuan, H; Bordas, SPA, An alternative alpha finite element method (A\(α\)FEM) for free and forced structural vibration using triangular meshes, J Comput Appl Math, 233, 2112-2135, (2010) · Zbl 1423.74910 · doi:10.1016/j.cam.2009.08.117
[54] Liu, GR; Nguyen-Xuan, H; Nguyen-Thoi, T, A variationally consistent \(α\)FEM (VC\(α\)FEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements, Int J Numer Methods Eng, 85, 461-497, (2011) · Zbl 1217.74126 · doi:10.1002/nme.2977
[55] Xiangyang, C; Guangyao, L; Gang, Z; Suzhen, W, NS-FEM/ES-FEM for contact problems in metal forming analysis, Int J Mater Form, 3, 887-890, (2010) · doi:10.1007/s12289-010-0910-1
[56] Li, Y; Liu, GR; Zhang, GY, An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements, Finite Elem Anal Des, 47, 256-275, (2011) · doi:10.1016/j.finel.2010.10.007
[57] Xu, X; Gu, YT; Liu, GR, A hybrid smoothed finite element method (H-SFEM) to solid mechanics problems, Int J Comput Methods, 10, 1340011, (2013) · Zbl 1359.74453 · doi:10.1142/S0219876213400112
[58] Zhao, X; Bordas, SPA; Qu, J, A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities, Comput Mech, 52, 1417-1428, (2013) · Zbl 1398.74432 · doi:10.1007/s00466-013-0884-1
[59] Wu, F; Liu, GR; Li, GY; He, ZC, A new hybrid smoothed FEM for static and free vibration analyses of Reissner-Mindlin plates, Comput Mech, 54, 1-26, (2014) · Zbl 1311.74131 · doi:10.1007/s00466-014-1039-8
[60] Cui, XY; Chang, S; Li, GY, A two-step Taylor Galerkin smoothed finite element method for Lagrangian dynamic problem, Int J Comput Methods, 12, 1540004, (2015) · Zbl 1359.74399 · doi:10.1142/S0219876215400046
[61] Li, E; He, ZC; Xu, X; Liu, GR; Gu, YT, A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems, Acta Mech, 226, 4223-4245, (2015) · Zbl 1328.74080 · doi:10.1007/s00707-015-1456-6
[62] Lee, K; Son, Y; Im, S, Three-dimensional variable-node elements based upon CS-FEM for elastic-plastic analysis, Comput Struct, 158, 308-332, (2015) · doi:10.1016/j.compstruc.2015.06.005
[63] Li, Y; Zhang, GY; Liu, GR; Huang, YN; Zong, Z, A contact analysis approach based on linear complementarity formulation using smoothed finite element methods, Eng Anal Bound Elem, 37, 1244-1258, (2013) · Zbl 1287.74028 · doi:10.1016/j.enganabound.2013.06.003
[64] Cui, XY; Li, GY, Metal forming analysis using the edge-based smoothed finite element method, Finite Elem Anal Des, 63, 33-41, (2013) · Zbl 1282.74086 · doi:10.1016/j.finel.2012.09.003
[65] Zeng, W; Larsen, JM; Liu, GR, Smoothing technique based crystal plasticity finite element modeling of crystalline materials, Int J Plast, 65, 250-268, (2015) · doi:10.1016/j.ijplas.2014.09.007
[66] Nguyen-Xuan, H; Rabczuk, T; Bordas, SPA; Debongnie, JF, A smoothed finite element method for plate analysis, Comput Methods Appl Mech Eng, 197, 1184-1203, (2008) · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[67] Nguyen-Thanh, N; Rabczuk, T; Nguyen-Xuan, H; Bordas, SPA, A smoothed finite element method for shell analysis, Comput Methods Appl Mech Eng, 198, 165-177, (2008) · Zbl 1194.74453 · doi:10.1016/j.cma.2008.05.029
[68] Nguyen-Xuan, H; Nguyen-Thoi, T, A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates, Commun Numer Methods Eng, 25, 882-906, (2009) · Zbl 1172.74047 · doi:10.1002/cnm.1137
[69] Cui, XY; Liu, GR; Li, GY; Zhang, GY; Zheng, G, Analysis of plates and shells using an edge-based smoothed finite element method, Comput Mech, 45, 141-156, (2010) · Zbl 1202.74165 · doi:10.1007/s00466-009-0429-9
[70] Nguyen-Xuan, H; Liu, GR; Thai-Hoang, C; Nguyen-Thoi, T, An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput Methods Appl Mech Eng, 199, 471-489, (2010) · Zbl 1227.74083 · doi:10.1016/j.cma.2009.09.001
[71] Nguyen-Xuan, H; Rabczuk, T; Nguyen-Thanh, N; Nguyen-Thoi, T; Bordas, SPA, A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput Mech, 46, 679-701, (2010) · Zbl 1260.74029 · doi:10.1007/s00466-010-0509-x
[72] Zhang, ZQ; Liu, GR, An edge-based smoothed finite element method (ES-FEM) using 3-node triangular elements for 3D non-linear analysis of spatial membrane structures, Int J Numer Methods Eng, 86, 135-154, (2011) · Zbl 1235.74328 · doi:10.1002/nme.3049
[73] Baiz, PM; Natarajan, S; Bordas, SPA; Kerfriden, P; Rabczuk, T, Linear buckling analysis of cracked plates by SFEM and XFEM, J Mech Mater Struct, 6, 1213-1238, (2011) · doi:10.2140/jomms.2011.6.1213
[74] Nguyen-Thanh, N; Rabczuk, T; Nguyen-Xuan, H; Bordas, S, An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates, Finite Elem Anal Des, 47, 519-535, (2011) · doi:10.1016/j.finel.2011.01.004
[75] Zheng, G; Cui, X; Li, G; Wu, S, An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells, Comput Mech, 48, 65-80, (2011) · Zbl 1398.74434 · doi:10.1007/s00466-011-0582-9
[76] Thai-Hoang, C; Nguyen-Thanh, N; Nguyen-Xuan, H; Rabczuk, T; Bordas, S, A cell-based smoothed finite element method for free vibration and buckling analysis of shells, KSCE J Civ Eng, 15, 347-361, (2011) · doi:10.1007/s12205-011-1092-1
[77] Nguyen-Thoi, T; Phung-Van, P; Nguyen-Xuan, H; Thai-Hoang, C, A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates, Int J Numer Methods Eng, 91, 705-741, (2012) · Zbl 1253.74111 · doi:10.1002/nme.4289
[78] Nguyen-Thoi, T; Phung-Van, P; Luong-Van, H; Nguyen-Van, H; Nguyen-Xuan, H, A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates, Comput Mech, 51, 65-81, (2013) · Zbl 1294.74064 · doi:10.1007/s00466-012-0705-y
[79] Nguyen-Thoi, T; Luong-Van, H; Phung-Van, P; Rabczuk, T; Tran-Trung, D, Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) method, Int J Compos Mater, 3, 19-27, (2013)
[80] Nguyen-Thoi, T; Phung-Van, P; Thai-Hoang, C; Nguyen-Xuan, H, A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures, Int J Mech Sci, 74, 32-45, (2013) · doi:10.1016/j.ijmecsci.2013.04.005
[81] Nguyen-Thoi, T; Bui-Xuan, T; Phung-Van, P; Nguyen-Xuan, H; Ngo-Thanh, P, Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements, Comput Struct, 125, 100-113, (2013) · doi:10.1016/j.compstruc.2013.04.027
[82] Phung-Van, P; Nguyen-Thoi, T; Le-Dinh, T; Nguyen-Xuan, H, Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Smart Mater Struct, 22, 095026, (2013) · doi:10.1088/0964-1726/22/9/095026
[83] Phung-Van, P; Nguyen-Thoi, T; Tran, LV; Nguyen-Xuan, H, A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C 0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates, Comput Mater Sci, 79, 857-872, (2013) · doi:10.1016/j.commatsci.2013.06.010
[84] Wu, CT; Wang, HP, An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh, Int J Numer Methods Eng, 95, 288-312, (2013) · Zbl 1352.74452 · doi:10.1002/nme.4506
[85] Luong-Van, H; Nguyen-Thoi, T; Liu, GR; Phung-Van, P, A cell-based smoothed finite element method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation, Eng Anal Bound Elem, 42, 8-19, (2014) · Zbl 1297.74122 · doi:10.1016/j.enganabound.2013.11.008
[86] Phung-Van, P; Nguyen-Thoi, T; Luong-Van, H; Lieu-Xuan, Q, Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C 0-HSDT, Comput Methods Appl Mech Eng, 270, 15-36, (2014) · Zbl 1296.74124 · doi:10.1016/j.cma.2013.11.019
[87] Phung-Van, P; Nguyen-Thoi, T; Luong-Van, H; Thai-Hoang, C; Nguyen-Xuan, H, A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation, Comput Methods Appl Mech Eng, 272, 138-159, (2014) · Zbl 1296.74125 · doi:10.1016/j.cma.2014.01.009
[88] Phung-Van, P; Thai, CH; Nguyen-Thoi, T; Nguyen-Xuan, H, Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory, Compos B, 60, 227-238, (2014) · doi:10.1016/j.compositesb.2013.12.044
[89] Nguyen-Thoi, T; Bui-Xuan, T; Phung-Van, P; Nguyen-Hoang, S; Nguyen-Xuan, H, An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates, KSCE J Civ Eng, 18, 1072-1082, (2014) · Zbl 1294.74064 · doi:10.1007/s12205-014-0002-8
[90] Luong-Van, H; Nguyen-Thoi, T; Liu, GR; Phung-Van, P, A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation, Eng Anal Bound Elem, 42, 8-19, (2014) · Zbl 1297.74122 · doi:10.1016/j.enganabound.2013.11.008
[91] Phung-Van, P; Nguyen-Thoi, T; Dang-Trung, H; Nguyen-Minh, N, A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C 0-HSDT for analyses of composite plates, Compos Struct, 111, 553-565, (2014) · doi:10.1016/j.compstruct.2014.01.038
[92] Phung-Van, P; Luong-Van, H; Nguyen-Thoi, T; Nguyen-Xuan, H, A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle, Int J Numer Methods Eng, 98, 988-1014, (2014) · Zbl 1352.74424 · doi:10.1002/nme.4662
[93] Nguyen-Thoi, T; Rabczuk, T; Lam-Phat, T; Ho-Huu, V; Phung-Van, P, Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3), Theor Appl Fract Mech, 72, 150-163, (2014) · doi:10.1016/j.tafmec.2014.02.004
[94] Élie-Dit-Cosaque, XJ; Gakwaya, A; Naceur, H, Smoothed finite element method implemented in a resultant eight-node solid-shell element for geometrical linear analysis, Comput Mech, 55, 105-126, (2015) · Zbl 1311.74119 · doi:10.1007/s00466-014-1085-2
[95] Phung-Van, P; Nguyen-Thoi, T; Bui-Xuan, T; Lieu-Xuan, Q, A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C 0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates, Comput Mater Sci, 96, 549-558, (2015) · doi:10.1016/j.commatsci.2014.04.043
[96] Nguyen-Thoi, T; Phung-Van, P; Nguyen-Thoi, MH; Dang-Trung, H, An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming, J Comput Appl Math, 281, 32-48, (2015) · Zbl 1309.74046 · doi:10.1016/j.cam.2014.12.006
[97] Nguyen-Thoi, T; Nguyen-Thoi, MH; Vo-Duy, T; Nguyen-Minh, N, Development of the cell-based smoothed discrete shear gap plate element (CS-FEM-DSG3) using three-node triangles, Int J Comput Methods, 12, 1540015, (2015) · Zbl 1359.74431 · doi:10.1142/S0219876215400150
[98] Le-Anh, L; Nguyen-Thoi, T; Ho-Huu, V; Dang-Trung, H; Bui-Xuan, T, Static and frequency optimization of folded laminated composite plates using an adjusted differential evolution algorithm and a smoothed triangular plate element, Compos Struct, 127, 382-394, (2015) · doi:10.1016/j.compstruct.2015.02.069
[99] Nguyen-Minh, N; Nguyen-Thoi, T; Bui-Xuan, T; Vo-Duy, T, Static and free vibration analyses of stiffened folded plates using a cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Appl Math Comput, 266, 212-234, (2015) · Zbl 1404.74166
[100] Nguyen-Thoi, MH; Le-Anh, L; Ho-Huu, V; Dang-Trung, H; Nguyen-Thoi, T, An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells, Front Struct Civ Eng, 9, 341-358, (2015) · doi:10.1007/s11709-015-0302-1
[101] Dang-Trung, H; Luong-Van, H; Nguyen-Thoi, T; Ang, KK, Analyses of stiffened plates resting on viscoelastic foundation subjected to a moving load by a cell-based smoothed triangular plate element, Int J Struct Stab Dyn, 2016, 1750011, (2016)
[102] Ho-Huu, V; Do-Thi, TD; Dang-Trung, H; Vo-Duy, T; Nguyen-Thoi, T, Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method, Compos Struct, 146, 132-147, (2016) · doi:10.1016/j.compstruct.2016.03.016
[103] Nguyen-Thoi, T; Rabczuk, T; Ho-Huu, V; Le-Anh, L; Dang-Trung, H; Vo-Duy, T, An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates, Int J Comput Methods, 2016, 1750011, (2016) · Zbl 1404.74167
[104] Nguyen-Hoang, S; Phung-Van, P; Natarajan, S; Kim, HG, A combined scheme of edge-based and node-based smoothed finite element methods for Reissner-Mindlin flat shells, Eng Comput, 32, 267-284, (2016) · doi:10.1007/s00366-015-0416-z
[105] Cui, XY; Liu, GR; Li, GY, Bending and vibration responses of laminated composite plates using an edge-based smoothing technique, Eng Anal Bound Elem, 35, 818-826, (2011) · Zbl 1259.74029 · doi:10.1016/j.enganabound.2011.01.007
[106] Nguyen-Xuan, H; Tran, LV; Nguyen-Thoi, T; Vu-Do, HC, Analysis of functionally graded plates using an edge-based smoothed finite element method, Compos Struct, 93, 3019-3039, (2011) · doi:10.1016/j.compstruct.2011.04.028
[107] Thai-Hoang, C; Nguyen-Thanh, N; Nguyen-Xuan, H; Rabczuk, T, An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates, Appl Math Comput, 217, 7324-7348, (2011) · Zbl 1415.74048
[108] Nguyen-Xuan, H; Tran, LV; Thai, CH; Nguyen-Thoi, T, Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing, Thin Wall Struct, 54, 1-18, (2012) · doi:10.1016/j.tws.2012.01.013
[109] Hoang, CT; Tran, VL; Trung, DT; Trung, NT; Hung, NX, Analysis of laminated composite plates using higher-order shear deformation theory and node-based smoothed discrete shear gap method, Appl Math Model, 36, 5657-5677, (2012) · Zbl 1254.74079 · doi:10.1016/j.apm.2012.01.003
[110] Natarajan, S; Ferreira, AJM; Bordas, SPA; Carrera, E; Cinefra, M, Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements, Compos Struct, 105, 75-81, (2013) · doi:10.1016/j.compstruct.2013.04.040
[111] Phan-Dao, HH; Nguyen-Xuan, H; Thai-Hoang, C; Nguyen-Thoi, T; Rabczuk, T, An edge-based smoothed finite element method for analysis of laminated composite plates, Int J Comput Methods, 10, 1340005, (2013) · Zbl 1359.74434 · doi:10.1142/S0219876213400057
[112] Natarajan, S; Ferreira, AJM; Bordas, S; Carrera, E; Cinefra, M; Zenkour, AM, Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method, Math Probl Eng, 2014, 247932, (2014) · Zbl 1407.74060 · doi:10.1155/2014/247932
[113] Rodrigues, JD; Natarajan, S; Ferreira, AJM; Carrera, E; Cinefra, M; Bordas, SPA, Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques, Comput Struct, 135, 83-87, (2014) · doi:10.1016/j.compstruc.2014.01.011
[114] Herath, MT; Natarajan, S; Prusty, BG; John, NS, Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers, Compos Struct, 109, 189-197, (2014) · doi:10.1016/j.compstruct.2013.10.016
[115] Li, E; Zhang, Z; Chang, CC; Liu, GR; Li, Q, Numerical homogenization for incompressible materials using selective smoothed finite element method, Compos Struct, 123, 216-232, (2015) · doi:10.1016/j.compstruct.2014.12.016
[116] Tran, TN; Liu, GR; Nguyen-Xuan, H; Nguyen-Thoi, T, An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int J Numer Methods Eng, 82, 917-938, (2010) · Zbl 1188.74073
[117] Le, CV; Nguyen-Xuan, H; Askes, H; Bordas, S; Rabczuk, T; Nguyen-Vinh, H, A cell-based smoothed finite element method for kinematic limit analysis, Int J Numer Methods Eng, 83, 1651-1674, (2010) · Zbl 1202.74177 · doi:10.1002/nme.2897
[118] Nguyen-Xuan, H; Rabczuk, T; Nguyen-Thoi, T; Tran, TN; Nguyen-Thanh, N, Computation of limit and shakedown loads using a node-based smoothed finite element method, Int J Numer Methods Eng, 90, 287-310, (2012) · Zbl 1242.74142 · doi:10.1002/nme.3317
[119] Le, CV; Nguyen-Xuan, H; Askes, H; Rabczuk, T; Nguyen-Thoi, T, Computation of limit load using edge-based smoothed finite element method and second-order cone programming, Int J Comput Methods, 10, 1340004, (2013) · Zbl 1359.74420 · doi:10.1142/S0219876213400045
[120] Nguyen-Xuan, H; Rabczuk, T, Adaptive selective ES-FEM limit analysis of cracked plane-strain structures, Front Struct Civ Eng, 9, 478-490, (2015) · doi:10.1007/s11709-015-0317-7
[121] Chen, L; Liu, GR; Nourbakhsh, N; Zeng, K, A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput Mech, 45, 109-125, (2010) · Zbl 1398.74316 · doi:10.1007/s00466-009-0422-3
[122] Liu, GR; Chen, L; Nguyen-Thoi, T; Zeng, K; Zhang, GY, A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, Int J Numer Methods Eng, 83, 1466-1497, (2010) · Zbl 1202.74179 · doi:10.1002/nme.2868
[123] Liu, GR; Nourbakhshnia, N; Chen, L; Zhang, YW, A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks, Int J Comput Methods, 7, 191-214, (2010) · Zbl 1267.74112 · doi:10.1142/S0219876210002131
[124] Liu, GR; Nourbakhshnia, N; Zhang, YW, A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems, Eng Fract Mech, 78, 863-876, (2011) · doi:10.1016/j.engfracmech.2009.11.004
[125] Nourbakhshnia, N; Liu, GR, A quasi-static crack growth simulation based on the singular ES-FEM, Int J Numer Methods Eng, 88, 473-492, (2011) · Zbl 1242.74144 · doi:10.1002/nme.3186
[126] Chen, L; Liu, GR; Jiang, Y; Zeng, K; Zhang, J, A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media, Eng Fract Mech, 78, 85-109, (2011) · doi:10.1016/j.engfracmech.2010.09.018
[127] Jiang, Y; Liu, GR; Zhang, YW; Chen, L; Tay, TE, A singular ES-FEM for plastic fracture mechanics, Comput Methods Appl Mech Eng, 200, 2943-2955, (2011) · Zbl 1230.74183 · doi:10.1016/j.cma.2011.06.001
[128] Chen, L; Liu, GR; Zeng, K; Zhang, J, A novel variable power singular element in G space with strain smoothing for bi-material fracture analyses, Eng Anal Bound Elem, 35, 1303-1317, (2011) · Zbl 1259.74028 · doi:10.1016/j.enganabound.2011.06.007
[129] Chen, L; Liu, GR; Zeng, K, A combined extended and edge-based smoothed finite element method (ES-XFEM) for fracture analysis of 2D elasticity, Int J Comput Methods, 8, 773-786, (2011) · Zbl 1245.74081 · doi:10.1142/S0219876211002812
[130] Nourbakhshnia, N; Liu, GR, Fatigue analysis using the singular ES-FEM, Int J Fatigue, 40, 105-111, (2012) · doi:10.1016/j.ijfatigue.2011.12.018
[131] Nguyen-Xuan, H; Liu, GR; Nourbakhshnia, N; Chen, L, A novel singular ES-FEM for crack growth simulation, Eng Fract Mech, 84, 41-66, (2012) · doi:10.1016/j.engfracmech.2012.01.001
[132] Liu, P; Bui, TQ; Zhang, C; Yu, TT; Liu, GR; Golub, MV, The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids, Comput Methods Appl Mech Eng, 233, 68-80, (2012) · Zbl 1253.74108 · doi:10.1016/j.cma.2012.04.008
[133] Jiang, Y; Tay, TE; Chen, L; Sun, XS, An edge-based smoothed XFEM for fracture in composite materials, Int J Fatigue, 179, 179-199, (2013)
[134] Nguyen-Xuan, H; Liu, GR; Bordas, S; Natarajan, S; Rabczuk, T, An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order, Comput Methods Appl Mech Eng, 253, 252-273, (2013) · Zbl 1297.74126 · doi:10.1016/j.cma.2012.07.017
[135] Vu-Bac, N; Nguyen-Xuan, H; Chen, L; Lee, CK; Zi, G; Zhuang, X; Liu, GR; Rabczuk, T, A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics, J Appl Math, 2013, 978026, (2013) · Zbl 1271.74418 · doi:10.1155/2013/978026
[136] Liu, GR; Chen, L; Li, M, S-FEM for fracture problems, theory, formulation and application, Int J Comput Methods, 11, 1343003, (2014) · Zbl 1359.74025 · doi:10.1142/S0219876213430032
[137] Jiki, PN; Agber, JU, Damage evaluation in gap tubular truss ‘K’ bridge joints using SFEM, J Constr Steel Res, 93, 135-142, (2014) · doi:10.1016/j.jcsr.2013.10.010
[138] Jiang, Y; Tay, TE; Chen, L; Zhang, YW, Extended finite element method coupled with face-based strain smoothing technique for three-dimensional fracture problems, Int J Numer Methods Eng, 102, 1894-1916, (2015) · Zbl 1352.74370 · doi:10.1002/nme.4878
[139] Zeng, W; Liu, GR; Jiang, C; Dong, XW; Chen, HD; Bao, Y; Jiang, Y, An effective fracture analysis method based on the virtual crack closure-integral technique implemented in CS-FEM, Appl Math Model, 40, 3783-3800, (2016) · Zbl 1459.74168 · doi:10.1016/j.apm.2015.11.001
[140] Chen, H; Wang, Q; Liu, GR; Wang, Y; Sun, J, Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method, Int J Mech Sci, 115, 123-134, (2016) · doi:10.1016/j.ijmecsci.2016.06.012
[141] Wu, L; Liu, P; Shi, C; Zhang, Z; Bui, TQ; Jiao, D, Edge-based smoothed extended finite element method for dynamic fracture analysis, Appl Math Model, 40, 8564-8579, (2016) · Zbl 1471.74066 · doi:10.1016/j.apm.2016.05.027
[142] Liu, GR; Zeng, W; Nguyen-Xuan, H, Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics, Finite Elem Anal Des, 63, 51-61, (2013) · Zbl 1282.74090 · doi:10.1016/j.finel.2012.08.007
[143] Hu, XB; Cui, XY; Feng, H; Li, GY, Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method, Eng Anal Bound Elem, 70, 40-55, (2016) · Zbl 1403.65137 · doi:10.1016/j.enganabound.2016.06.002
[144] Zhang, ZQ; Liu, GR, Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems, Comput Mech, 46, 229-246, (2010) · Zbl 1398.74431 · doi:10.1007/s00466-009-0420-5
[145] Zhang, ZQ; Liu, GR, Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods, Int J Numer Methods Eng, 84, 149-178, (2010) · Zbl 1202.74188
[146] Nguyen-Thanh, N; Thai-Hoang, C; Nguyen-Xuan, H; Rabczuk, T, A smoothed finite element method for the static and free vibration analysis of shells, J Civ Eng Archit, 4, 34, (2010)
[147] Wang, L; Han, D; Liu, GR; Cui, X, Free vibration analysis of double-walled carbon nanotubes using the smoothed finite element method, Int J Comput Methods, 8, 879-890, (2011) · Zbl 1245.74023 · doi:10.1142/S0219876211002873
[148] He, Z; Li, G; Zhong, Z; Cheng, A; Zhang, G; Li, E, An improved modal analysis for three-dimensional problems using face-based smoothed finite element method, Acta Mech Solida Sin, 26, 140-150, (2013) · doi:10.1016/S0894-9166(13)60014-2
[149] Cui, XY; Li, GY; Liu, GR, An explicit smoothed finite element method (SFEM) for elastic dynamic problems, Int J Comput Methods, 10, 1340002, (2013) · Zbl 1359.74398 · doi:10.1142/S0219876213400021
[150] Nguyen-Thoi, T; Phung-Van, P; Rabczuk, T; Nguyen-Xuan, H; Le-Van, C, Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (\(n\)CS-FEM), Int J Comput Methods, 10, 1340008, (2013) · Zbl 1359.74433 · doi:10.1142/S0219876213400082
[151] Feng, H; Cui, XY; Li, GY; Feng, SZ, A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems, Comput Mech, 53, 859-876, (2014) · Zbl 1398.74462 · doi:10.1007/s00466-013-0936-6
[152] Yang, G; Hu, D; Ma, G; Wan, D, A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis, Meccanica, 51, 1897-1911, (2016) · Zbl 1388.74050 · doi:10.1007/s11012-015-0343-5
[153] Cui, XY; Hu, X; Li, GY; Liu, GR, A modified smoothed finite element method for static and free vibration analysis of solid mechanics, Int J Comput Methods, (2016) · Zbl 1359.74130 · doi:10.1142/S0219876216500432
[154] He, ZC; Liu, GR; Zhong, ZH; Zhang, GY; Cheng, AG, Dispersion free analysis of acoustic problems using the alpha finite element method, Comput Mech, 46, 867-881, (2010) · Zbl 1344.76078 · doi:10.1007/s00466-010-0516-y
[155] He, ZC; Liu, GR; Zhong, ZH; Zhang, GY; Cheng, AG, Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method, Finite Elem Anal Des, 46, 1114-1121, (2010) · doi:10.1016/j.finel.2010.08.003
[156] Yao, LY; Yu, DJ; Cui, XY; Zang, XG, Numerical treatment of acoustic problems with the smoothed finite element method, Appl Acoust, 71, 743-753, (2010) · doi:10.1016/j.apacoust.2010.03.006
[157] He, ZC; Cheng, AG; Zhang, GY; Zhong, ZH; Liu, GR, Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method (ES-FEM), Int J Numer Methods Eng, 86, 1322-1338, (2011) · Zbl 1235.76065 · doi:10.1002/nme.3100
[158] He, ZC; Li, GY; Zhong, ZH; Cheng, AG; Zhang, GY; Li, E; Liu, GR, An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh, Comput Struct, 106, 125-134, (2012) · doi:10.1016/j.compstruc.2012.04.014
[159] Li, W; Chai, Y; Lei, M; Liu, GR, Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM), Eng Anal Bound Elem, 42, 84-91, (2014) · Zbl 1297.74040 · doi:10.1016/j.enganabound.2013.08.009
[160] Li, E; He, ZC; Xu, X; Liu, GR, Hybrid smoothed finite element method for acoustic problems, Comput Methods Appl Mech Eng, 283, 664-688, (2015) · Zbl 1423.74902 · doi:10.1016/j.cma.2014.09.021
[161] He, ZC; Li, GY; Liu, GR; Cheng, AG; Li, E, Numerical investigation of ES-FEM with various mass re-distribution for acoustic problems, Appl Acoust, 89, 222-233, (2015) · doi:10.1016/j.apacoust.2014.09.017
[162] Wu, F; Liu, GR; Li, GY; Cheng, AG; He, ZC; Hu, ZH, A novel hybrid FS-FEM/SEA for the analysis of vibro-acoustic problems, Int J Numer Methods Eng, 102, 1815-1829, (2015) · Zbl 1352.74453 · doi:10.1002/nme.4871
[163] He, Z; Li, G; Zhang, G; Liu, G; Gu, Y; Li, E, Acoustic analysis using a mass-redistributed smoothed finite element method with quadrilateral mesh, Eng Comput, 32, 2292-2317, (2015) · doi:10.1108/EC-10-2014-0219
[164] He, ZC; Li, E; Li, GY; Wu, F; Liu, GR; Nie, X, Acoustic simulation using \(α\)-FEM with a general approach for reducing dispersion error, Eng Anal Bound Elem, 61, 241-253, (2015) · Zbl 1403.76044 · doi:10.1016/j.enganabound.2015.07.018
[165] Wang, G; Cui, XY; Feng, H; Li, GY, A stable node-based smoothed finite element method for acoustic problems, Comput Methods Appl Mech Eng, 297, 348-370, (2015) · Zbl 1423.76285 · doi:10.1016/j.cma.2015.09.005
[166] Wang, G; Cui, XY; Liang, ZM; Li, GY, A coupled smoothed finite element method (S-FEM) for structural-acoustic analysis of shells, Eng Anal Bound Elem, 61, 207-217, (2015) · Zbl 1403.74325 · doi:10.1016/j.enganabound.2015.07.017
[167] Chai, Y; Li, W; Gong, Z; Li, T, Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering problems, Ocean Eng, 116, 129-141, (2016) · doi:10.1016/j.oceaneng.2016.02.034
[168] Chai, Y; Li, W; Gong, Z; Li, T, Hybrid smoothed finite element method for two dimensional acoustic radiation problems, Appl Acoust Part A, 103, 90-101, (2016) · doi:10.1016/j.apacoust.2015.10.012
[169] Wu, F; He, ZC; Liu, GR; Li, GY; Cheng, AG, A novel hybrid ES-FE-SEA for mid-frequency prediction of transmission losses in complex acoustic systems, Appl Acoust, 111, 198-204, (2016) · doi:10.1016/j.apacoust.2016.04.011
[170] Kumar, V; Metha, R, Impact simulations using smoothed finite element method, Int J Comput Methods, 10, 1350012, (2013) · Zbl 1359.74337 · doi:10.1142/S0219876213500126
[171] Nguyen-Thoi, T; Liu, GR; Nguyen-Xuan, H; Nguyen-Tran, C, Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Int J Numer Method Biomed Eng, 27, 198-218, (2011) · Zbl 1370.74144 · doi:10.1002/cnm.1291
[172] Nguyen-Xuan, H; Wu, CT; Liu, GR, An adaptive selective ES-FEM for plastic collapse analysis, Eur J Mech A-Solid, 58, 278-290, (2016) · Zbl 1406.74639 · doi:10.1016/j.euromechsol.2016.02.005
[173] Kazemzadeh-Parsi, MJ; Daneshmand, F, Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method, Finite Elem Anal Des, 45, 599-611, (2009) · doi:10.1016/j.finel.2009.03.008
[174] Li, E; Liu, GR; Tan, V, Simulation of hyperthermia treatment using the edge-based smoothed finite-element method, Numer Heat Transf A-Appl, 57, 822-847, (2010) · doi:10.1080/10407782.2010.489483
[175] Li, E; Liu, GR; Tan, V; He, ZC, An efficient algorithm for phase change problem in tumor treatment using \(α\)FEM, Int J Therm Sci, 49, 1954-1967, (2010) · doi:10.1016/j.ijthermalsci.2010.06.003
[176] Kumar, V, Smoothed finite element methods for thermo-mechanical impact problems, Int J Comput Methods, 10, 13400100, (2013) · Zbl 1359.74418 · doi:10.1142/S0219876213400100
[177] Xue, BY; Wu, SC; Zhang, WH; Liu, GR, A smoothed FEM (S-FEM) for heat transfer problems, Int J Comput Methods, 10, 1340001, (2013) · doi:10.1142/S021987621340001X
[178] Feng, SZ; Cui, XY; Li, GY, Analysis of transient thermo-elastic problems using edge-based smoothed finite element method, Int J Therm Sci, 65, 127-135, (2013) · doi:10.1016/j.ijthermalsci.2012.10.007
[179] Feng, SZ; Cui, XY; Li, GY; Feng, H; Xu, FX, Thermo-mechanical analysis of functionally graded cylindrical vessels using edge-based smoothed finite element method, Int J Pres Ves Pip, 111, 302-309, (2013) · doi:10.1016/j.ijpvp.2013.09.004
[180] Feng, SZ; Cui, XY; Li, GY, Transient thermal mechanical analyses using a face-based smoothed finite element method (FS-FEM), Int J Therm Sci, 74, 95-103, (2013) · doi:10.1016/j.ijthermalsci.2013.07.002
[181] Li, E; He, ZC; Xu, X, An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermomechanical problems, Int J Heat Mass Transf, 66, 723-732, (2013) · doi:10.1016/j.ijheatmasstransfer.2013.07.063
[182] Feng, S; Cui, X; Li, G, Thermo-mechanical analyses of composite structures using face-based smoothed finite element method, Int J Appl Mech, 6, 1450020, (2014) · doi:10.1142/S1758825114500203
[183] Li, E; Zhang, Z; He, ZC; Xu, X; Liu, GR; Li, Q, Smoothed finite element method with exact solutions in heat transfer problems, Int J Heat Mass Transf, 78, 1219-1231, (2014) · doi:10.1016/j.ijheatmasstransfer.2014.07.078
[184] Feng, S; Cui, X; Li, G, Thermo-mechanical analysis of composite pressure vessels using edge-based smoothed finite element method, Int J Comput Methods, 11, 1350089, (2014) · Zbl 1359.74055 · doi:10.1142/S0219876213500898
[185] Cui, XY; Li, ZC; Feng, H; Feng, SZ, Steady and transient heat transfer analysis using a stable node-based smoothed finite element method, Int J Therm Sci, 110, 12-25, (2016) · doi:10.1016/j.ijthermalsci.2016.06.027
[186] Nguyen-Van, H; Mai-Duy, N; Tran-Cong, T, A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures, CMES: Comput Model Eng Sci, 23, 209-222, (2008) · Zbl 1232.74108
[187] Nguyen-Van, H; Mai-Duy, N; Tran-Cong, T, A node-based element for analysis of planar piezoelectric structures, CMES: Comput Model Eng Sci, 36, 65-95, (2008) · Zbl 1232.74109
[188] Nguyen-Xuan, H; Liu, GR; Nguyen-Thoi, T; Nguyen-Tran, C, An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures, Smart Mater Struct, 18, 065015, (2009) · Zbl 1267.74115 · doi:10.1088/0964-1726/18/6/065015
[189] Olyaie, MS; Razfar, MR; Kansa, EJ, Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method, CMES: Comput Model Eng Sci, 75, 43-87, (2011) · Zbl 1356.74214
[190] Olyaie, MS; Razfar, MR; Wang, S; Kansa, EJ, Topology optimization of a linear piezoelectric micromotor using the smoothed finite element method, CMES: Comput Model Eng Sci, 82, 55-81, (2011) · Zbl 1356.74167
[191] Chen, L; Zhang, YW; Liu, GR; Nguyen-Xuan, H; Zhang, ZQ, A stabilized finite element method for certified solution with bounds in static and frequency analyses of piezoelectric structures, Comput Methods Appl Mech Eng, 241, 65-81, (2012) · Zbl 1353.74069 · doi:10.1016/j.cma.2012.05.018
[192] Li, E; He, ZC; Chen, L; Li, B; Xu, X; Liu, GR, An ultra-accurate hybrid smoothed finite element method for piezoelectric problem, Eng Anal Bound Elem, 50, 188-197, (2015) · Zbl 1403.74114 · doi:10.1016/j.enganabound.2014.08.005
[193] Atia, KSR; Heikal, AM; Obayya, SSA, Efficient smoothed finite element time domain analysis for photonic devices, Opt Express, 23, 22199-22213, (2015) · doi:10.1364/OE.23.022199
[194] He, ZC; Liu, GR; Zhong, ZH; Zhang, GY; Cheng, AG, A coupled ES-FEM/BEM method for fluid-structure interaction problems, Eng Anal Bound Elem, 35, 140-147, (2011) · Zbl 1259.74030 · doi:10.1016/j.enganabound.2010.05.003
[195] Zhang, ZQ; Liu, GR; Khoo, BC, Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, Int J Numer Methods Eng, 90, 1292-1320, (2012) · Zbl 1242.74178 · doi:10.1002/nme.4299
[196] Yao, J; Liu, GR; Narmoneva, DA; Hinton, RB; Zhang, ZQ, Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves, Comput Mech, 50, 789-804, (2012) · Zbl 1311.74047 · doi:10.1007/s00466-012-0781-z
[197] Zhang, ZQ; Liu, GR; Khoo, BC, A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems, Comput Mech, 51, 129-150, (2013) · Zbl 1312.74049 · doi:10.1007/s00466-012-0710-1
[198] Nguyen-Thoi, T; Phung-Van, P; Rabczuk, T; Nguyen-Xuan, H; Le-Van, C, An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems, Int J Comput Methods, 10, 1340003, (2013) · Zbl 1359.74432 · doi:10.1142/S0219876213400033
[199] Wang, S; Khoo, BC; Liu, GR; Xu, GX; Chen, L, Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions, J Comput Phys, 276, 315-340, (2014) · Zbl 1349.76282 · doi:10.1016/j.jcp.2014.07.016
[200] Nguyen-Thoi, T; Phung-Van, P; Nguyen-Hoang, S; Lieu-Xuan, Q, A smoothed coupled NS/\(n\)ES-FEM for dynamic analysis of 2D fluid-solid interaction problems, Appl Math Comput, 232, 324-346, (2014) · Zbl 1329.74281
[201] Nguyen-Thoi, T; Phung-Van, P; Nguyen-Hoang, S; Lieu-Xuan, Q, A coupled alpha-FEM for dynamic analyses of 2D fluid-solid interaction problems, J Comput Appl Math, 271, 130-149, (2014) · Zbl 1329.74281 · doi:10.1016/j.cam.2014.04.004
[202] He, T, On a partitioned strong coupling algorithm for modeling fluid-structure interaction, Int J Appl Mech, 7, 1550021, (2015) · doi:10.1142/S1758825115500210
[203] He, T, Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid, Int J Comput Methods, 12, 1550025, (2015) · Zbl 1359.76181 · doi:10.1142/S0219876215500255
[204] Zhang, ZQ; Liu, GR, Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept, Eng Anal Bound Elem, 42, 99-114, (2014) · Zbl 1297.74134 · doi:10.1016/j.enganabound.2014.02.003
[205] Jiang, C; Zhang, ZQ; Han, X; Liu, GR, Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues, Int J Numer Methods Eng, 99, 587-610, (2014) · Zbl 1352.74006 · doi:10.1002/nme.4694
[206] Onishi, Y; Amaya, K, A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems, Int J Numer Methods Eng, 99, 354-371, (2014) · Zbl 1352.74420 · doi:10.1002/nme.4684
[207] Jiang, C; Liu, GR; Han, X; Zhang, ZQ; Zeng, W, A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole, Int J Numer Method Biomed Eng, 31, 1-25, (2015) · doi:10.1002/cnm.2697
[208] Onishi, Y; Iida, R; Amaya, K, F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids, Int J Numer Methods Eng, (2016) · Zbl 1380.65386 · doi:10.1002/nme.5337
[209] Li, E; Chen, J; Zhang, Z; Fang, J; Liu, GR; Li, Q, Smoothed finite element method for analysis of multi-layered systems—applications in biomaterials, Comput Struct, 168, 16-29, (2016) · doi:10.1016/j.compstruc.2016.02.003
[210] Li, E; Liao, WH, An efficient finite element algorithm in elastography, Int J Appl Mech, 8, 1650037, (2016) · doi:10.1142/S175882511650037X
[211] Souza Neto, EA; Pires, FMA; Owen, DRJ, F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part I: formulation and benchmarking, Int J Numer Methods Eng, 62, 353-383, (2005) · Zbl 1179.74159 · doi:10.1002/nme.1187
[212] Natarajan, S; Bordas, S; Ooi, ET, Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods, Int J Numer Methods Eng, 104, 1173-1199, (2015) · Zbl 1352.65531 · doi:10.1002/nme.4965
[213] Sohn, D; Jin, S, Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces, Comput Methods Appl Mech Eng, 293, 92-113, (2015) · Zbl 1425.65180 · doi:10.1016/j.cma.2015.04.007
[214] Francis, A; Ortiz-Bernardin, A; Bordas, S; Natarajan, S, Linear smoothed polygonal and polyhedral finite elements, Int J Numer Methods, (2016) · Zbl 07874311 · doi:10.1002/nme.5324
[215] Nguyen-Thoi, T; Liu, GR; Nguyen-Xuan, H, An n-sided polygonal edge-based smoothed finite element method (nes-FEM) for solid mechanics, Int J Numer Method Biomed Eng, 27, 1446-1472, (2011) · Zbl 1248.74043
[216] Wang S (2014) An ABAQUS implementation of the cell-based smoothed finite element method using quadrilateral elements. Master thesis, University of Cincinnati
[217] Bordas, S; Natarajan, S; Kerfriden, P; Augarde, CE; Mahapatra, DR; Rabczuk, T; Pont, SD, On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM), Int J Numer Methods Eng, 86, 637-666, (2011) · Zbl 1216.74019 · doi:10.1002/nme.3156
[218] Ong, TH; Heaney, CE; Lee, CK; Liu, GR; Nguyen-Xuan, H, On stability, convergence and accuracy of bes-FEM and bfs-FEM for nearly incompressible elasticity, Comput Methods Appl Mech Eng, 285, 315-345, (2015) · Zbl 1423.74104 · doi:10.1016/j.cma.2014.10.022
[219] Wu, CT; Hu, W; Liu, GR, Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity, Int J Numer Methods Eng, 100, 374-398, (2014) · Zbl 1352.74451 · doi:10.1002/nme.4751
[220] Leonetti, L; Garcea, G; Nguyen-Xuan, H, A mixed edge-based smoothed finite element method (MES-FEM) for elasticity, Comput Struct, 173, 123-138, (2016) · doi:10.1016/j.compstruc.2016.06.003
[221] Liu, GR; Zhang, GY; Dai, KY; Wang, YY; Zhong, ZH; Li, GY; Han, X, A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int J Comput Methods, 2, 645-665, (2005) · Zbl 1137.74303 · doi:10.1142/S0219876205000661
[222] Zhang, GY; Liu, GR; Wang, YY; Huang, HT; Zhong, ZH; Li, GY; Han, X, A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems, Int J Numer Methods Eng, 72, 1524-1543, (2007) · Zbl 1194.74543 · doi:10.1002/nme.2050
[223] Liu, GR; Zhang, GY, Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM), Int J Numer Methods Eng, 74, 1128-1161, (2008) · Zbl 1158.74532 · doi:10.1002/nme.2204
[224] Liu, GR; Li, Y; Dai, KY; Luan, MT; Xue, W, A linearly conforming radial point interpolation method for solid mechanics problems, Int J Comput Methods, 3, 401-428, (2006) · Zbl 1198.74120 · doi:10.1142/S0219876206001132
[225] Duong MT (2014) Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method—SFEM. Ph.D. thesis, RWTH Aachen University · Zbl 1398.74316
[226] Duong MT, Nguyen-Nhu H, Staat M (2015) Modeling and simulation of a growing mass by the smoothed finite element method (SFEM). In: 3rd ECCOMAS Young Investigators Conference. July 20-23, Aachen, Germany · Zbl 1002.76065
[227] Zeng, W; Liu, GR; Jiang, C; Nguyen-Thoi, T; Jiang, Y, A generalized beta finite element method with coupled smoothing techniques for solid mechanics, Eng Anal Bound Elem, 73, 103-119, (2016) · Zbl 1403.74133 · doi:10.1016/j.enganabound.2016.09.008
[228] Liu, GR, On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation, Int J Comput Methods, 13, 1640003, (2016) · Zbl 1359.65261 · doi:10.1142/S021987621640003X
[229] Yue, JH; Li, M; Liu, GR; Niu, RP, Proofs of the stability and convergence of a weakened weak method using PIM shape functions, Comput Math Appl, 72, 933-951, (2016) · Zbl 1404.65284 · doi:10.1016/j.camwa.2016.06.002
[230] Liu, GR; Zhang, GY; Wang, YY; Zhong, ZH; Li, GY; Han, X, A nodal integration technique for meshfree radial point interpolation method (NI-RPCM), Int J Solids Struct, 44, 3840-3860, (2007) · Zbl 1135.74050 · doi:10.1016/j.ijsolstr.2006.10.025
[231] Chakrabarty J (2006) Theory of plasticity. Butterworth-Heinemann, Burlington · Zbl 1229.60004
[232] Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York · Zbl 0980.74001
[233] de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Hoboken · doi:10.1002/9780470694626
[234] Belytschko, T; Krongauz, Y; Organ, D; Fleming, M; Krysl, P, Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[235] Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore · Zbl 1046.76001 · doi:10.1142/5340
[236] Barth, T; Ohlberger, M; Stein, E (ed.); Borst, R (ed.); Hughes, TJR (ed.), Finite volume methods: foundation and analysis, No. 1, (2004), New York
[237] Onate, E; Idelsohn, SR; Pin, F; Aubry, R, The particle finite element method. an overview, Int J Comput Methods, 1, 267-307, (2004) · Zbl 1182.76901 · doi:10.1142/S0219876204000204
[238] Liu, MB; Liu, GR, Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch Comput Methods Eng, 17, 25-76, (2010) · Zbl 1348.76117 · doi:10.1007/s11831-010-9040-7
[239] Liu, MB; Liu, GR; Zhou, LW; Chang, JZ, Dissipative particle dynamics (DPD): an overview and recent developments, Arch Comput Methods Eng, 17, 25-76, (2015) · Zbl 1348.76004 · doi:10.1007/s11831-010-9040-7
[240] Liu, J; Zhang, ZQ; Zhang, GY, A smoothed finite element method (S-FEM) for large-deformation elastoplastic analysis, Int J Comput Methods, 12, 1-26, (2015) · Zbl 1359.74422
[241] Bordas, S; Nguyen-Dang, H; Phan-Phuong, Q; Nguyen-Xuan, H; Natarajan, S; Duflot, M, Smoothed finite element method for two-dimensional elastoplasticity, Vietnam J Mech VAST, 31, 293-312, (2009)
[242] Carstensen, C; Klose, R, Elastoviscoplastic finite element analysis in 100 lines of Matlab, J Numer Math, 10, 157-192, (2002) · Zbl 1099.74544 · doi:10.1515/JNMA.2002.157
[243] Suri, M, Analytic and computational assessment of locking in the hp finite element method, Comput Methods Appl Mech Eng, 133, 347-371, (1996) · Zbl 0893.73070 · doi:10.1016/0045-7825(95)00947-7
[244] Zienkiewicz, OC; Lefebvre, D, A robust triangular plate bending element of Reissner-Mindlin type, Int J Numer Methods Eng, 26, 1169-1184, (1988) · Zbl 0634.73064 · doi:10.1002/nme.1620260511
[245] Pian, THH; Chen, D-P; Kang, D, A new formulation of hybrid/mixed finite element, Comput Struct, 16, 81-87, (1983) · Zbl 0498.73073 · doi:10.1016/0045-7949(83)90149-9
[246] Hughes, TJR; Tezduyar, T, Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J Appl Mech, 48, 587-596, (1981) · Zbl 0459.73069 · doi:10.1115/1.3157679
[247] Bathe, KJ; Dvorkin, EN, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int J Numer Methods Eng, 21, 367-383, (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[248] Bathe, KJ; Dvorkin, EN, A formulation of general shell elements. the use of mixed interpolation of tensorial components, Int J Numer Methods Eng, 22, 697-722, (1986) · Zbl 0585.73123 · doi:10.1002/nme.1620220312
[249] Simo, JC; Rifai, MS, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Methods Eng, 29, 1595-1638, (1990) · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[250] César de Sá, JMA; Natal Jorge, RM; Fontes Valente, RA; Almeida Areias, PM, Development of shear locking-free shell elements using an enhanced assumed strain formulation, Int J Numer Methods Eng, 53, 1721-1750, (2002) · Zbl 1114.74484 · doi:10.1002/nme.360
[251] Bletzinger, K; Bischoff, M; Ramm, E, A unified approach for shearlocking-free triangular and rectangular shell finite elements, Comput Struct, 75, 321-334, (2000) · doi:10.1016/S0045-7949(99)00140-6
[252] Zienkiewicz, OC; Taylor, RL; Too, JM, Reduced integration technique in general analysis of plates and shells, Int J Numer Methods Eng, 3, 275-290, (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
[253] Hughes, TJR; Taylor, RL; Kanoknukulchai, W, Simple and efficient element for plate bending, Int J Numer Methods Eng, 11, 1529-1543, (1977) · Zbl 0363.73067 · doi:10.1002/nme.1620111005
[254] Hughes, TJR; Cohen, M; Haroun, M, Reduced and selective integration techniques in finite element analysis of plates, Nucl Eng Des, 46, 203-222, (1978) · doi:10.1016/0029-5493(78)90184-X
[255] Tran, LV; Nguyen-Thoi, T; Thai, CH; Nguyen-Xuan, H, An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates, Mech Adv Mater Struc, 22, 248-268, (2015) · doi:10.1080/15376494.2012.736055
[256] Li, E; Zhang, Z; Chang, CC; Zhou, S; Liu, GR; Li, Q, A new homogenization formulation for multifunctional composites, Int J Comput Methods, 13, 1640002, (2015) · Zbl 1359.74357 · doi:10.1142/S0219876216400028
[257] Ihlenburg, F; Babuška, I, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Int J Numer Methods Eng, 38, 3745-3774, (1995) · Zbl 0851.73062 · doi:10.1002/nme.1620382203
[258] Deraemaeker, A; Babuška, I; Bouillard, P, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int J Numer Methods Eng, 46, 471-499, (1999) · Zbl 0957.65098 · doi:10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
[259] Harari, I; Hughes, TJR, Galerkin/least-squares finite element methods for the reduced wave equation with nonreflecting boundary conditions in unbounded domains, Comput Methods Appl Mech Eng, 98, 411-454, (1992) · Zbl 0762.76053 · doi:10.1016/0045-7825(92)90006-6
[260] Thompson, LL; Pinsky, PM, A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation, Int J Numer Methods Eng, 38, 371-397, (1995) · Zbl 0844.76060 · doi:10.1002/nme.1620380303
[261] Babuška, I; Ihlenburg, F; Paik, ET; Sauter, SA, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput Methods Appl Mech Eng, 128, 325-359, (1995) · Zbl 0863.73055 · doi:10.1016/0045-7825(95)00890-X
[262] Melenk, JM; Babuška, I, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289-314, (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[263] Chadwick, EA; Bettess, P, Modelling of progressive short waves using wave envelopes, Int J Numer Methods Eng, 40, 3229-3246, (1997) · Zbl 0915.76047 · doi:10.1002/(SICI)1097-0207(19970915)40:17<3229::AID-NME209>3.0.CO;2-8
[264] Franca, L; Farhat, C; Macedo, A; Lessoine, M, Residual-free bubbles for the Helmholtz equation, Int J Numer Methods Eng, 40, 4003-4009, (1997) · Zbl 0897.73062 · doi:10.1002/(SICI)1097-0207(19971115)40:21<4003::AID-NME199>3.0.CO;2-Z
[265] Cessenat, O; Despres, B, Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem, SIAM J Numer Anal, 35, 255-299, (1998) · Zbl 0955.65081 · doi:10.1137/S0036142995285873
[266] Bouillard, P; Suleau, S, Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect, Comput Methods Appl Mech Eng, 162, 317-335, (1998) · Zbl 0944.76033 · doi:10.1016/S0045-7825(97)00350-2
[267] Farhat, C; Harari, I; Franca, LP, The discontinuous enrichment method, Comput Methods Appl Mech Eng, 190, 6455-6479, (2001) · Zbl 1002.76065 · doi:10.1016/S0045-7825(01)00232-8
[268] Dey, S; Datta, DK; Shirron, JJ; Shephard, MS, P-version FEM for structural acoustics with a posteriori error estimation, Comput Methods Appl Mech Eng, 195, 1946-1957, (2006) · Zbl 1120.76037 · doi:10.1016/j.cma.2004.11.030
[269] Petersen, S; Dreyer, D; Ov, Estorff, Assessment of finite and spectral element shape functions or efficient iterative simulations of interior acoustics, Comput Method Appl Mech Eng, 195, 6463-6478, (2006) · Zbl 1119.76043 · doi:10.1016/j.cma.2006.01.008
[270] Kireeva, O; Mertens, T; Bouillard, Ph, A coupled EFGM-CIE method for acoustic radiation, Comput Struct, 84, 2092-2099, (2006) · doi:10.1016/j.compstruc.2006.04.011
[271] Yao, L; Li, Y; Li, L, Dispersion error reduction for acoustic problems using the smoothed finite element method (SFEM), Int J Numer Methods Fluids, 80, 343-357, (2015) · doi:10.1002/fld.4081
[272] Li, E; He, ZC; Zhang, Z; Liu, GR; Li, Q, Stability analysis of generalized mass formulation in dynamic heat transfer, Numer Heat Transf B-Fund, 69, 287-311, (2016) · doi:10.1080/10407790.2015.1104215
[273] Sigrist JF (2015) Fluid-structure interaction: an introduction to finite element coupling. Wiley, West Sussex · Zbl 1332.76002 · doi:10.1002/9781118927762
[274] Nguyen-Thoi, T; Phung-Van, P; Ho-Huu, V; Le-Anh, L, An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D fluid-solid interaction problems, KSCE J Civ Eng, 19, 641-650, (2015) · doi:10.1007/s12205-015-0293-4
[275] Zeng W (2015) Advanced development of smoothed finite element method (S-FEM) and its applications. Ph.D. thesis, University of Cincinnati · Zbl 0897.73062
[276] Jiang Y (2013) Smoothed methods for fracture problems and application to composite materials. Ph.D. thesis, National University of Singapore
[277] Nourbakhshnia N (2012) A new singular S-FEM for the linear elastic fracture mechanics. Ph.D. thesis, National University of Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.